-
Notifications
You must be signed in to change notification settings - Fork 0
/
net_utils.py
44 lines (38 loc) · 905 Bytes
/
net_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
'''
Created on Aug 31, 2017
@author: Michal.Busta at gmail.com
'''
import numpy as np
import torch
from torch.autograd import Variable
def np_to_variable(x, is_cuda=True, dtype=torch.FloatTensor):
v = torch.from_numpy(x).type(dtype)
if is_cuda:
v = v.cuda()
return v
def load_net(fname, net, optimizer=None):
sp = torch.load(fname)
step = sp['step']
try:
learning_rate = sp['learning_rate']
except:
import traceback
traceback.print_exc()
learning_rate = 0.001
opt_state = sp['optimizer']
sp = sp['state_dict']
for k, v in net.state_dict().items():
try:
param = sp[k]
v.copy_(param)
except:
import traceback
traceback.print_exc()
if optimizer is not None:
try:
optimizer.load_state_dict(opt_state)
except:
import traceback
traceback.print_exc()
print(fname)
return step, learning_rate