-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathvtb1_5.m
executable file
·88 lines (78 loc) · 2.62 KB
/
vtb1_5.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
function vtb1_5(m,k,dtype,dcoef,dt,tott,x0,v0)
%VTB1_5 Damping Simulations.
% VTB1_5(m,k,dtype,dcoef,dt,tott,x0,v0) plots the free decay of
% single degree of freedom systems with different types of
% damping. m is the mass, k is the stiffness, dtype is the
% damping type number where 1 is linear viscous damping, 2 is
% coulomb damping, and 3 is air damping. dt is the time step
% size for the numerical simulation, and tott is the total
% time of the simulation. x0 is the initial displacement,
% v0 is the initial velocity. The variable dcoef represents
% the damping coefficient for the type of damping you have chosen.
% i.e. c for linear damping, mu N for coulomb damping, and
% alpha for air damping. Note that the point at which
% 'sticktion' occurs for coulomb damping is predicted, but
% this prediction is tenuous at best.
n=floor(tott/dt+1);
z(:,1)=[x0;v0];
h=dt;
t=0:dt:tott;
k1=[0;0];k2=[0;0];k3=[0;0];k4=[0;0];
if dtype==1
for l1=1:(n-1);
z1=z(:,l1);
k1(1)=h*z1(2);
k1(2)=h*(-k*z1(1)-dcoef*z1(2))/m;
k2(1)=h*(z1(2)+.5*k1(2));
k2(2)=h*(-k*(z1(1)+.5*k1(1))-dcoef*(z1(2)+.5*k1(2)))/m;
k3(1)=h*(z1(2)+.5*k2(2));
k3(2)=h*(-k*(z1(1)+.5*k2(1))-dcoef*(z1(2)+.5*k2(2)))/m;
k4(1)=h*(z1(2)+k3(2));
k4(2)=h*(-k*(z1(1)+k3(1))-dcoef*(z1(2)+k3(2)))/m;
z(:,l1+1)=z(:,l1)+1/6*(k1+2*k2+2*k3+k4);
end
coefval=['(c = ' num2str(dcoef) ' )'];
end
if dtype==2
for l1=1:(n-1);
z1=z(:,l1);
k1(1)=h*(z1(2));
k1(2)=h*(-k*z1(1)-dcoef*sign(z1(2)))/m;
k2(1)=h*(z1(2)+.5*k1(2));
k2(2)=h*(-k*(z1(1)+.5*k1(1))-dcoef*sign(z1(2)+.5*k1(2)))/m;
k3(1)=h*(z1(2)+.5*k2(2));
k3(2)=h*(-k*(z1(1)+.5*k2(1))-dcoef*sign(z1(2)+.5*k2(2)))/m;
k4(1)=h*(z1(2)+k3(2));
k4(2)=h*(-k*(z1(1)+k3(1))-dcoef*sign(z1(2)+k3(2)))/m;
z(:,l1+1)=z(:,l1)+1/6*(k1+2*k2+2*k3+k4);
if abs(z1(2))<abs(x0*sqrt(k/m)+v0)*.05 & dcoef>abs(k*z1(1))
z(:,l1+1)=z(:,l1);
z(2,l1+1)=0;
end
end
coefval=['(\mu = ' num2str(dcoef) ' )'];
end
if dtype==3
for l1=1:(n-1);
z1=z(:,l1);
k1(1)=h*(z1(2));
k1(2)=h*(-k*z1(1)-dcoef*sign(z1(2))*(z1(2))^2)/m;
k2(1)=h*(z1(2)+.5*k1(2));
k2(2)=h*(-k*(z1(1)+.5*k1(1))-dcoef*sign(z1(2)+.5*k1(2))*(z1(2)+.5*k1(2))^2)/m;
k3(1)=h*(z1(2)+.5*k2(2));
k3(2)=h*(-k*(z1(1)+.5*k2(1))-dcoef*sign(z1(2)+.5*k2(2))*(z1(2)+.5*k2(2))^2)/m;
k4(1)=h*(z1(2)+k3(2));
k4(2)=h*(-k*(z1(1)+k3(1))-dcoef*sign(z1(2)+k3(2))*(z1(2)+k3(2))^2)/m;
z(:,l1+1)=z(:,l1)+1/6*(k1+2*k2+2*k3+k4);
end
coefval=['(\alpha = ' num2str(dcoef) ' )'];
end
aa=version;ll=length(aa);
plot(t,z(1,:))
xlabel('Time')
ylabel('Displacement')
title([ 'Displacement versus Time ' coefval])
grid on
zoom on
%Automatically check for updates
vtbchk