diff --git a/container-search/src/test/java/com/yahoo/search/ranking/GlobalPhaseSetupTest.java b/container-search/src/test/java/com/yahoo/search/ranking/GlobalPhaseSetupTest.java index 7f4dfc4c9a7c..082531a97dd8 100644 --- a/container-search/src/test/java/com/yahoo/search/ranking/GlobalPhaseSetupTest.java +++ b/container-search/src/test/java/com/yahoo/search/ranking/GlobalPhaseSetupTest.java @@ -53,6 +53,67 @@ RankProfilesConfig readConfig(String subDir) { assertEquals(Tensor.from("tensor(v[3]):[2,0.25,1.5]"), setup.defaultValues.get("query(v_has_def)")); } + @Test void withNormalizers() { + RankProfilesConfig rpCfg = readConfig("with_normalizers"); + assertEquals(1, rpCfg.rankprofile().size()); + RankProfilesEvaluator rpEvaluator = createEvaluator(rpCfg); + var setup = GlobalPhaseSetup.maybeMakeSetup(rpCfg.rankprofile().get(0), rpEvaluator); + assertNotNull(setup); + var nList = setup.normalizers; + assertEquals(7, nList.size()); + nList.sort((a,b) -> a.name().compareTo(b.name())); + + var n = nList.get(0); + assertEquals("normalize@2974853441@linear", n.name()); + assertEquals(0, n.inputEvalSpec().fromQuery().size()); + assertEquals(1, n.inputEvalSpec().fromMF().size()); + assertEquals("funmf", n.inputEvalSpec().fromMF().get(0)); + assertEquals("linear", n.supplier().get().normalizing()); + + n = nList.get(1); + assertEquals("normalize@3414032797@rrank", n.name()); + assertEquals(0, n.inputEvalSpec().fromQuery().size()); + assertEquals(1, n.inputEvalSpec().fromMF().size()); + assertEquals("attribute(year)", n.inputEvalSpec().fromMF().get(0)); + assertEquals("reciprocal-rank{k:60.0}", n.supplier().get().normalizing()); + + n = nList.get(2); + assertEquals("normalize@3551296680@linear", n.name()); + assertEquals(0, n.inputEvalSpec().fromQuery().size()); + assertEquals(1, n.inputEvalSpec().fromMF().size()); + assertEquals("nativeRank", n.inputEvalSpec().fromMF().get(0)); + assertEquals("linear", n.supplier().get().normalizing()); + + n = nList.get(3); + assertEquals("normalize@4280591309@rrank", n.name()); + assertEquals(0, n.inputEvalSpec().fromQuery().size()); + assertEquals(1, n.inputEvalSpec().fromMF().size()); + assertEquals("bm25(myabstract)", n.inputEvalSpec().fromMF().get(0)); + assertEquals("reciprocal-rank{k:42.0}", n.supplier().get().normalizing()); + + n = nList.get(4); + assertEquals("normalize@4370385022@linear", n.name()); + assertEquals(1, n.inputEvalSpec().fromQuery().size()); + assertEquals("myweight", n.inputEvalSpec().fromQuery().get(0)); + assertEquals(1, n.inputEvalSpec().fromMF().size()); + assertEquals("attribute(foo1)", n.inputEvalSpec().fromMF().get(0)); + assertEquals("linear", n.supplier().get().normalizing()); + + n = nList.get(5); + assertEquals("normalize@4640646880@linear", n.name()); + assertEquals(0, n.inputEvalSpec().fromQuery().size()); + assertEquals(1, n.inputEvalSpec().fromMF().size()); + assertEquals("attribute(foo1)", n.inputEvalSpec().fromMF().get(0)); + assertEquals("linear", n.supplier().get().normalizing()); + + n = nList.get(6); + assertEquals("normalize@6283155534@linear", n.name()); + assertEquals(0, n.inputEvalSpec().fromQuery().size()); + assertEquals(1, n.inputEvalSpec().fromMF().size()); + assertEquals("bm25(mytitle)", n.inputEvalSpec().fromMF().get(0)); + assertEquals("linear", n.supplier().get().normalizing()); + } + private RankProfilesEvaluator createEvaluator(RankProfilesConfig config) { RankingConstantsConfig constantsConfig = new RankingConstantsConfig.Builder().build(); RankingExpressionsConfig expressionsConfig = new RankingExpressionsConfig.Builder().build(); diff --git a/container-search/src/test/resources/config/with_normalizers/rank-profiles.cfg b/container-search/src/test/resources/config/with_normalizers/rank-profiles.cfg new file mode 100644 index 000000000000..ea5df465cce5 --- /dev/null +++ b/container-search/src/test/resources/config/with_normalizers/rank-profiles.cfg @@ -0,0 +1,67 @@ +rankprofile[0].name "with_normalizers" +rankprofile[0].fef.property[0].name "rankingExpression(funmf).rankingScript" +rankprofile[0].fef.property[0].value "attribute(foo1) * attribute(year)" +rankprofile[0].fef.property[1].name "rankingExpression(simplefun).rankingScript" +rankprofile[0].fef.property[1].value "attribute(foo1) * query(myweight)" +rankprofile[0].fef.property[2].name "rankingExpression(bm25two).rankingScript" +rankprofile[0].fef.property[2].value "bm25(mytitle) + bm25(myabstract)" +rankprofile[0].fef.property[3].name "rankingExpression(notused).rankingScript" +rankprofile[0].fef.property[3].value "normalize@5969841192@linear" +rankprofile[0].fef.property[4].name "vespa.rank.firstphase" +rankprofile[0].fef.property[4].value "rankingExpression(firstphase)" +rankprofile[0].fef.property[5].name "rankingExpression(firstphase).rankingScript" +rankprofile[0].fef.property[5].value "attribute(foo1) + bm25(mytitle) + bm25(myabstract)" +rankprofile[0].fef.property[6].name "vespa.rank.globalphase" +rankprofile[0].fef.property[6].value "rankingExpression(globalphase)" +rankprofile[0].fef.property[7].name "rankingExpression(globalphase).rankingScript" +rankprofile[0].fef.property[7].value "normalize@3551296680@linear + normalize@4640646880@linear + normalize@4370385022@linear + normalize@2974853441@linear + normalize@6283155534@linear + normalize@3414032797@rrank + normalize@4280591309@rrank" +rankprofile[0].fef.property[8].name "vespa.match.feature" +rankprofile[0].fef.property[8].value "nativeRank" +rankprofile[0].fef.property[9].name "vespa.match.feature" +rankprofile[0].fef.property[9].value "attribute(foo1)" +rankprofile[0].fef.property[10].name "vespa.match.feature" +rankprofile[0].fef.property[10].value "attribute(year)" +rankprofile[0].fef.property[11].name "vespa.match.feature" +rankprofile[0].fef.property[11].value "bm25(mytitle)" +rankprofile[0].fef.property[12].name "vespa.match.feature" +rankprofile[0].fef.property[12].value "bm25(myabstract)" +rankprofile[0].fef.property[13].name "vespa.match.feature" +rankprofile[0].fef.property[13].value "rankingExpression(funmf)" +rankprofile[0].fef.property[14].name "vespa.feature.rename" +rankprofile[0].fef.property[14].value "rankingExpression(funmf)" +rankprofile[0].fef.property[15].name "vespa.feature.rename" +rankprofile[0].fef.property[15].value "funmf" +rankprofile[0].fef.property[16].name "vespa.type.attribute.t1" +rankprofile[0].fef.property[16].value "tensor(m{},v[3])" +rankprofile[0].normalizer[0].name "normalize@3551296680@linear" +rankprofile[0].normalizer[0].input "nativeRank" +rankprofile[0].normalizer[0].algo LINEAR +rankprofile[0].normalizer[0].kparam 0.0 +rankprofile[0].normalizer[1].name "normalize@4640646880@linear" +rankprofile[0].normalizer[1].input "attribute(foo1)" +rankprofile[0].normalizer[1].algo LINEAR +rankprofile[0].normalizer[1].kparam 0.0 +rankprofile[0].normalizer[2].name "normalize@4370385022@linear" +rankprofile[0].normalizer[2].input "simplefun" +rankprofile[0].normalizer[2].algo LINEAR +rankprofile[0].normalizer[2].kparam 0.0 +rankprofile[0].normalizer[3].name "normalize@2974853441@linear" +rankprofile[0].normalizer[3].input "funmf" +rankprofile[0].normalizer[3].algo LINEAR +rankprofile[0].normalizer[3].kparam 0.0 +rankprofile[0].normalizer[4].name "normalize@6283155534@linear" +rankprofile[0].normalizer[4].input "bm25(mytitle)" +rankprofile[0].normalizer[4].algo LINEAR +rankprofile[0].normalizer[4].kparam 0.0 +rankprofile[0].normalizer[5].name "normalize@3414032797@rrank" +rankprofile[0].normalizer[5].input "attribute(year)" +rankprofile[0].normalizer[5].algo RRANK +rankprofile[0].normalizer[5].kparam 60.0 +rankprofile[0].normalizer[6].name "normalize@4280591309@rrank" +rankprofile[0].normalizer[6].input "bm25(myabstract)" +rankprofile[0].normalizer[6].algo RRANK +rankprofile[0].normalizer[6].kparam 42.0 +rankprofile[0].normalizer[7].name "normalize@5969841192@linear" +rankprofile[0].normalizer[7].input "firstPhase" +rankprofile[0].normalizer[7].algo LINEAR +rankprofile[0].normalizer[7].kparam 0.0