From ec1413c6baca2e30bdd732ca8e20a108c9e66852 Mon Sep 17 00:00:00 2001 From: Henning Baldersheim Date: Wed, 9 Nov 2022 20:15:42 +0100 Subject: [PATCH] Revert "Revert "Revert "Balder/model importing code in config model [run-systemtest]""" --- config-model-fat/pom.xml | 6 ++++++ .../yahoo/vespa/model/VespaModelFactory.java | 13 ++----------- .../yahoo/vespa/model/ml/ConvertedModel.java | 10 ++++++---- fat-model-dependencies/pom.xml | 5 ----- .../importer/ImportedModel.java | 19 +------------------ .../configmodelview/ImportedMlModel.java | 6 ------ .../onnx/OnnxMnistSoftmaxImportTestCase.java | 6 +++--- .../importer/onnx/TestableModel.java | 4 ++-- .../importer/vespa/VespaImportTestCase.java | 15 ++++++++------- 9 files changed, 28 insertions(+), 56 deletions(-) diff --git a/config-model-fat/pom.xml b/config-model-fat/pom.xml index 7be7f8eee94f..44880d052b6a 100644 --- a/config-model-fat/pom.xml +++ b/config-model-fat/pom.xml @@ -37,6 +37,12 @@ + + com.yahoo.vespa + model-integration + ${project.version} + provided + diff --git a/config-model/src/main/java/com/yahoo/vespa/model/VespaModelFactory.java b/config-model/src/main/java/com/yahoo/vespa/model/VespaModelFactory.java index 1ba8b4708911..e676667ae89f 100644 --- a/config-model/src/main/java/com/yahoo/vespa/model/VespaModelFactory.java +++ b/config-model/src/main/java/com/yahoo/vespa/model/VespaModelFactory.java @@ -2,11 +2,6 @@ package com.yahoo.vespa.model; import ai.vespa.rankingexpression.importer.configmodelview.MlModelImporter; -import ai.vespa.rankingexpression.importer.lightgbm.LightGBMImporter; -import ai.vespa.rankingexpression.importer.onnx.OnnxImporter; -import ai.vespa.rankingexpression.importer.tensorflow.TensorFlowImporter; -import ai.vespa.rankingexpression.importer.vespa.VespaImporter; -import ai.vespa.rankingexpression.importer.xgboost.XGBoostImporter; import com.yahoo.component.annotation.Inject; import com.yahoo.component.Version; import com.yahoo.component.provider.ComponentRegistry; @@ -61,6 +56,7 @@ public class VespaModelFactory implements ModelFactory { /** Creates a factory for Vespa models for this version of the source */ @Inject public VespaModelFactory(ComponentRegistry pluginRegistry, + ComponentRegistry modelImporters, ComponentRegistry additionalValidators, Zone zone) { this.version = new Version(VespaVersion.major, VespaVersion.minor, VespaVersion.micro); @@ -71,12 +67,7 @@ public VespaModelFactory(ComponentRegistry pluginRegistry, } } this.configModelRegistry = new MapConfigModelRegistry(modelBuilders); - this.modelImporters = List.of( - new VespaImporter(), - new OnnxImporter(), - new TensorFlowImporter(), - new XGBoostImporter(), - new LightGBMImporter()); + this.modelImporters = modelImporters.allComponents(); this.zone = zone; this.additionalValidators = List.copyOf(additionalValidators.allComponents()); diff --git a/config-model/src/main/java/com/yahoo/vespa/model/ml/ConvertedModel.java b/config-model/src/main/java/com/yahoo/vespa/model/ml/ConvertedModel.java index 96a6b39dc1ad..9ba87fd24bf0 100644 --- a/config-model/src/main/java/com/yahoo/vespa/model/ml/ConvertedModel.java +++ b/config-model/src/main/java/com/yahoo/vespa/model/ml/ConvertedModel.java @@ -199,8 +199,8 @@ private static Map convertAndStore(ImportedMlModel m ModelStore store) { // Add constants Set constantsReplacedByFunctions = new HashSet<>(); - model.smallConstantTensors().forEach((k, v) -> transformSmallConstant(store, profile, k, v)); - model.largeConstantTensors().forEach((k, v) -> transformLargeConstant(store, profile, queryProfiles, + model.smallConstants().forEach((k, v) -> transformSmallConstant(store, profile, k, v)); + model.largeConstants().forEach((k, v) -> transformLargeConstant(store, profile, queryProfiles, constantsReplacedByFunctions, k, v)); // Add functions @@ -294,7 +294,8 @@ private static Map convertStored(ModelStore store, R } private static void transformSmallConstant(ModelStore store, RankProfile profile, String constantName, - Tensor constantValue) { + String constantValueString) { + Tensor constantValue = Tensor.from(constantValueString); store.writeSmallConstant(constantName, constantValue); Reference name = FeatureNames.asConstantFeature(constantName); profile.add(new RankProfile.Constant(name, constantValue)); @@ -305,7 +306,8 @@ private static void transformLargeConstant(ModelStore store, QueryProfileRegistry queryProfiles, Set constantsReplacedByFunctions, String constantName, - Tensor constantValue) { + String constantValueString) { + Tensor constantValue = Tensor.from(constantValueString); RankProfile.RankingExpressionFunction rankingExpressionFunctionOverridingConstant = profile.getFunctions().get(constantName); if (rankingExpressionFunctionOverridingConstant != null) { TensorType functionType = rankingExpressionFunctionOverridingConstant.function().getBody().type(profile.typeContext(queryProfiles)); diff --git a/fat-model-dependencies/pom.xml b/fat-model-dependencies/pom.xml index 9801098d5b65..f3312bd5d89e 100644 --- a/fat-model-dependencies/pom.xml +++ b/fat-model-dependencies/pom.xml @@ -69,11 +69,6 @@ model-evaluation ${project.version} - - com.yahoo.vespa - model-integration - ${project.version} - com.yahoo.vespa metrics diff --git a/model-integration/src/main/java/ai/vespa/rankingexpression/importer/ImportedModel.java b/model-integration/src/main/java/ai/vespa/rankingexpression/importer/ImportedModel.java index 35c409a637c1..4e7710aa4499 100644 --- a/model-integration/src/main/java/ai/vespa/rankingexpression/importer/ImportedModel.java +++ b/model-integration/src/main/java/ai/vespa/rankingexpression/importer/ImportedModel.java @@ -80,20 +80,11 @@ public Optional inputTypeSpec(String input) { return Optional.ofNullable(inputs.get(input)).map(TensorType::toString); } - /** - * Returns an immutable map of the small constants of this. - * These should have sizes up to a few kb at most, and correspond to constant values given in the source model. - */ - @Override - public Map smallConstantTensors() { return Map.copyOf(smallConstants); } /** * Returns an immutable map of the small constants of this, represented as strings on the standard tensor form. * These should have sizes up to a few kb at most, and correspond to constant values given in the source model. - * @deprecated Use smallConstantTensors instead */ @Override - @SuppressWarnings("removal") - @Deprecated(forRemoval = true) public Map smallConstants() { return asStrings(smallConstants); } boolean hasSmallConstant(String name) { return smallConstants.containsKey(name); } @@ -101,17 +92,9 @@ public Optional inputTypeSpec(String input) { /** * Returns an immutable map of the large constants of this. * These can have sizes in gigabytes and must be distributed to nodes separately from configuration. + * For TensorFlow this corresponds to Variable files stored separately. */ @Override - public Map largeConstantTensors() { return Map.copyOf(largeConstants); } - /** - * Returns an immutable map of the large constants of this, represented as strings on the standard tensor form. - * These can have sizes in gigabytes and must be distributed to nodes separately from configuration. - * @deprecated Use largeConstantTensors instead - */ - @Override - @SuppressWarnings("removal") - @Deprecated(forRemoval = true) public Map largeConstants() { return asStrings(largeConstants); } boolean hasLargeConstant(String name) { return largeConstants.containsKey(name); } diff --git a/model-integration/src/main/java/ai/vespa/rankingexpression/importer/configmodelview/ImportedMlModel.java b/model-integration/src/main/java/ai/vespa/rankingexpression/importer/configmodelview/ImportedMlModel.java index 8c8fc5c4b117..a2626818f87d 100644 --- a/model-integration/src/main/java/ai/vespa/rankingexpression/importer/configmodelview/ImportedMlModel.java +++ b/model-integration/src/main/java/ai/vespa/rankingexpression/importer/configmodelview/ImportedMlModel.java @@ -1,8 +1,6 @@ // Copyright Yahoo. Licensed under the terms of the Apache 2.0 license. See LICENSE in the project root. package ai.vespa.rankingexpression.importer.configmodelview; -import com.yahoo.tensor.Tensor; - import java.util.List; import java.util.Map; import java.util.Optional; @@ -23,12 +21,8 @@ enum ModelType { ModelType modelType(); Optional inputTypeSpec(String input); - @Deprecated(forRemoval = true) Map smallConstants(); - @Deprecated(forRemoval = true) Map largeConstants(); - Map smallConstantTensors(); - Map largeConstantTensors(); Map functions(); List outputExpressions(); diff --git a/model-integration/src/test/java/ai/vespa/rankingexpression/importer/onnx/OnnxMnistSoftmaxImportTestCase.java b/model-integration/src/test/java/ai/vespa/rankingexpression/importer/onnx/OnnxMnistSoftmaxImportTestCase.java index 7fb167ee6f1c..b6b63912c528 100644 --- a/model-integration/src/test/java/ai/vespa/rankingexpression/importer/onnx/OnnxMnistSoftmaxImportTestCase.java +++ b/model-integration/src/test/java/ai/vespa/rankingexpression/importer/onnx/OnnxMnistSoftmaxImportTestCase.java @@ -21,15 +21,15 @@ public void testMnistSoftmaxImport() { ImportedModel model = new OnnxImporter().importModel("test", "src/test/models/onnx/mnist_softmax/mnist_softmax.onnx").asNative(); // Check constants - assertEquals(2, model.largeConstantTensors().size()); + assertEquals(2, model.largeConstants().size()); - Tensor constant0 = model.largeConstantTensors().get("test_Variable"); + Tensor constant0 = Tensor.from(model.largeConstants().get("test_Variable")); assertNotNull(constant0); assertEquals(new TensorType.Builder(TensorType.Value.FLOAT).indexed("d2", 784).indexed("d1", 10).build(), constant0.type()); assertEquals(7840, constant0.size()); - Tensor constant1 = model.largeConstantTensors().get("test_Variable_1"); + Tensor constant1 = Tensor.from(model.largeConstants().get("test_Variable_1")); assertNotNull(constant1); assertEquals(new TensorType.Builder(TensorType.Value.FLOAT).indexed("d1", 10).build(), constant1.type()); assertEquals(10, constant1.size()); diff --git a/model-integration/src/test/java/ai/vespa/rankingexpression/importer/onnx/TestableModel.java b/model-integration/src/test/java/ai/vespa/rankingexpression/importer/onnx/TestableModel.java index f78150d9875d..5d13697df06e 100644 --- a/model-integration/src/test/java/ai/vespa/rankingexpression/importer/onnx/TestableModel.java +++ b/model-integration/src/test/java/ai/vespa/rankingexpression/importer/onnx/TestableModel.java @@ -63,8 +63,8 @@ else if (node instanceof CompositeNode) { static Context contextFrom(ImportedModel result) { TestableModelContext context = new TestableModelContext(); - result.largeConstantTensors().forEach((name, tensor) -> context.put("constant(" + name + ")", new TensorValue(tensor))); - result.smallConstantTensors().forEach((name, tensor) -> context.put("constant(" + name + ")", new TensorValue(tensor))); + result.largeConstants().forEach((name, tensor) -> context.put("constant(" + name + ")", new TensorValue(Tensor.from(tensor)))); + result.smallConstants().forEach((name, tensor) -> context.put("constant(" + name + ")", new TensorValue(Tensor.from(tensor)))); return context; } diff --git a/model-integration/src/test/java/ai/vespa/rankingexpression/importer/vespa/VespaImportTestCase.java b/model-integration/src/test/java/ai/vespa/rankingexpression/importer/vespa/VespaImportTestCase.java index d9c7e67c9465..25c51a75b0bc 100644 --- a/model-integration/src/test/java/ai/vespa/rankingexpression/importer/vespa/VespaImportTestCase.java +++ b/model-integration/src/test/java/ai/vespa/rankingexpression/importer/vespa/VespaImportTestCase.java @@ -4,6 +4,7 @@ import ai.vespa.rankingexpression.importer.ImportedModel; import ai.vespa.rankingexpression.importer.configmodelview.ImportedMlFunction; import com.yahoo.searchlib.rankingexpression.RankingExpression; +import com.yahoo.searchlib.rankingexpression.evaluation.Context; import com.yahoo.searchlib.rankingexpression.evaluation.MapContext; import com.yahoo.searchlib.rankingexpression.evaluation.TensorValue; import com.yahoo.searchlib.rankingexpression.parser.ParseException; @@ -38,12 +39,12 @@ private void assertModel(ImportedModel model) { assertEquals("tensor(name{},x[3])", model.inputs().get("input1").toString()); assertEquals("tensor(x[3])", model.inputs().get("input2").toString()); - assertEquals(2, model.smallConstantTensors().size()); - assertEquals("tensor(x[3]):[0.5, 1.5, 2.5]", model.smallConstantTensors().get("constant1").toString()); - assertEquals("tensor():{3.0}", model.smallConstantTensors().get("constant2").toString()); + assertEquals(2, model.smallConstants().size()); + assertEquals("tensor(x[3]):[0.5, 1.5, 2.5]", model.smallConstants().get("constant1")); + assertEquals("tensor():{3.0}", model.smallConstants().get("constant2")); - assertEquals(1, model.largeConstantTensors().size()); - assertEquals("tensor(x[3]):[0.5, 1.5, 2.5]", model.largeConstantTensors().get("constant1asLarge").toString()); + assertEquals(1, model.largeConstants().size()); + assertEquals("tensor(x[3]):[0.5, 1.5, 2.5]", model.largeConstants().get("constant1asLarge")); assertEquals(2, model.expressions().size()); assertEquals("reduce(reduce(input1 * input2, sum, name) * constant1, max, x) * constant2", @@ -71,8 +72,8 @@ public void testEmpty() { assertTrue(model.expressions().isEmpty()); assertTrue(model.functions().isEmpty()); assertTrue(model.inputs().isEmpty()); - assertTrue(model.largeConstantTensors().isEmpty()); - assertTrue(model.smallConstantTensors().isEmpty()); + assertTrue(model.largeConstants().isEmpty()); + assertTrue(model.smallConstants().isEmpty()); } @Test