diff --git a/docs/sphinx/source/examples/colbert_standalone_long_context_Vespa-cloud.ipynb b/docs/sphinx/source/examples/colbert_standalone_long_context_Vespa-cloud.ipynb index 20809f18..1123398a 100644 --- a/docs/sphinx/source/examples/colbert_standalone_long_context_Vespa-cloud.ipynb +++ b/docs/sphinx/source/examples/colbert_standalone_long_context_Vespa-cloud.ipynb @@ -20,9 +20,9 @@ "\n", "This guide illustrates how to feed multiple passages per Vespa document (long-context)\n", "\n", - "- Compress token vectors using binarization compatible with Vespa unpackbits\n", + "- Compress token vectors using binarization compatible with Vespa `unpack_bits`\n", "- Use Vespa hex feed format for binary vectors with mixed vespa tensors\n", - "- How to query Vespa with the colbert query tensor representation\n", + "- How to query Vespa with the ColBERT query tensor representation\n", "\n", "Read more about [Vespa Long-Context ColBERT](https://blog.vespa.ai/announcing-long-context-colbert-in-vespa/).\n", "\n", @@ -46,7 +46,7 @@ "id": "17d765d7", "metadata": {}, "source": [ - "Load a checkpoint with colbert and obtain document and query embeddings\n" + "Load a checkpoint with ColBERT and obtain document and query embeddings\n" ] }, { @@ -102,7 +102,7 @@ "id": "23b2e1f4", "metadata": {}, "source": [ - "See the shape of the colbert document embeddings:" + "See the shape of the ColBERT document embeddings:" ] }, { @@ -155,7 +155,7 @@ "source": [ "The query is always padded to 32 so in the above we have 32 query token vectors.\n", "\n", - "Routines for binarization and output in Vespa tensor format that can be used in queries and in JSON feed.\n" + "Routines for binarization and output in Vespa tensor format that can be used in queries and JSON feed.\n" ] }, { @@ -172,7 +172,7 @@ "\n", "\n", "def binarize_token_vectors_hex(vectors: torch.Tensor) -> Dict[str, str]:\n", - " # Notice axix=2 to pack the bits in the last dimension which is the token level vectors\n", + " # Notice axix=2 to pack the bits in the last dimension, which is the token level vectors\n", " binarized_token_vectors = np.packbits(np.where(vectors > 0, 1, 0), axis=2).astype(\n", " np.int8\n", " )\n", @@ -440,7 +440,7 @@ "id": "cebada8d", "metadata": {}, "source": [ - "### Querying Vespa with colbert tensors \n" + "### Querying Vespa with ColBERT tensors \n" ] }, {