forked from cvlab-epfl/tf-lift
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlosses.py
148 lines (108 loc) · 3.56 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# losses.py ---
#
# Filename: losses.py
# Description: WRITEME
# Author: Kwang Moo Yi
# Maintainer: Kwang Moo Yi
# Created: Wed Jun 28 20:06:43 2017 (+0200)
# Version:
# Package-Requires: ()
# URL:
# Doc URL:
# Keywords:
# Compatibility:
#
#
# Commentary:
#
#
#
#
# Change Log:
#
#
#
# Copyright (C), EPFL Computer Vision Lab.
# Code:
import tensorflow as tf
from utils import get_rect_inter, rebase_xyz
def loss_overlap(kp_pos1, gt_pos1, kp_pos2, gt_pos2, r_base,
alpha_non_overlap=1.0):
"""Loss from the overlap between keypoints detected in P1 and P2
Note that due to the random perturbation, we need to compensate back the
scale and the positions.
Parameters
----------
WRITEME
"""
# Rebase the coordinates to the same base.
xyz1 = rebase_xyz(kp_pos1, gt_pos1)
xyz2 = rebase_xyz(kp_pos2, gt_pos2)
# x,y and r for first patch
scaler = 2.0**xyz1[:, 2]
x1 = xyz1[:, 0] * scaler
y1 = xyz1[:, 1] * scaler
r1 = r_base * scaler
# x,y and r for second patch
scaler = 2.0**xyz2[:, 2]
x2 = xyz2[:, 0] * scaler
y2 = xyz2[:, 1] * scaler
r2 = r_base * scaler
# compute intersection and union
intersection = get_rect_inter(x1, y1, r1, x2, y2, r2)
union = (2.0 * r1)**2.0 + (2.0 * r2)**2.0 - intersection
# add to cost (this has max value of 1)
cost = 1.0 - intersection / union
# compute the non-overlapping region cost
dx = abs(x1 - x2)
gap_x = tf.nn.relu(dx - (r1 + r2))
dy = abs(y1 - y2)
gap_y = tf.nn.relu(dy - (r1 + r2))
# divide by the sqrt(union) to more-or-less be in same range as
# above cost
cost += alpha_non_overlap * (gap_x + gap_y) / (union**0.5)
return cost
def loss_classification(s1, s2, s3, s4):
"""Loss from the classification
Note s1, s2, and s3 are positive whereas s4 is negative. We therefore need
to balance the cost that comes out of this. The original implementation for
doing this is not identical to the new implementation, which may cause some
minor differences.
"""
# Get cost with l2 hinge loss
cost_p = tf.add_n([
tf.nn.relu(1.0 - s1), tf.nn.relu(1.0 - s2), tf.nn.relu(1.0 - s3)])
cost_n = tf.nn.relu(1.0 + s4)
# Make sure the elements sum to one. i.e. balance them.
cost = cost_p / 6.0 + cost_n / 2.0
return cost
def loss_desc_pair(d1, d2):
"""Loss using the euclidean distance
"""
# return tf.norm(d1 - d2, ord="euclidean", axis=1)
return tf.sqrt(tf.reduce_sum(tf.square(d1 - d2), axis=1))
def loss_desc_non_pair(d1, d3, margin, d2=None):
"""Loss using the euclidean distance and the margin
"""
pair_dist_1_to_3 = tf.sqrt(tf.reduce_sum(tf.square(d1 - d3), axis=1))
if d2 is not None:
pair_dist_2_to_3 = tf.sqrt(tf.reduce_sum(tf.square(d2 - d3), axis=1))
return tf.nn.relu(margin - tf.minimum(pair_dist_1_to_3, pair_dist_2_to_3))
else:
return tf.nn.relu(margin - pair_dist_1_to_3)
def loss_desc_triplet(d1, d2, d3, margin, squared_loss=False, mine_negative=False):
"""Triplet loss.
"""
d_pos = tf.sqrt(tf.reduce_sum(tf.square(d1 - d2), axis=1))
pair_dist_1_to_3 = tf.sqrt(tf.reduce_sum(tf.square(d1 - d3), axis=1))
if mine_negative:
pair_dist_2_to_3 = tf.sqrt(tf.reduce_sum(tf.square(d2 - d3), axis=1))
d_neg = tf.minimum(pair_dist_1_to_3, pair_dist_2_to_3)
else:
d_neg = pair_dist_1_to_3
if squared_loss:
return tf.nn.relu(tf.square(d_pos) - tf.square(d_neg) + margin)
else:
return tf.nn.relu(d_pos - d_neg + margin)
#
# losses.py ends here