-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect.py
250 lines (221 loc) · 8.46 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import sys
# sys.path.remove(sys.path[1])
import cv2
import numpy as np
import matplotlib.pyplot as plt
import glob
import time
import argparse
def histEqu(img):
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
hist,bins = np.histogram(img.flatten(),256,[0,256])
cdf = hist.cumsum()
cdf_normalized = cdf * hist.max()/ cdf.max()
cdf_m = np.ma.masked_equal(cdf,0)
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())
cdf = np.ma.filled(cdf_m,0).astype('uint8')
img2 = cdf[img]
h,w = img2.shape
return img2.reshape([h,w,1])
def binary(img):
newImg = np.dstack([histEqu(img[:,:,0]), histEqu(img[:,:,1]), histEqu(img[:,:,2])])
blur = cv2.GaussianBlur(newImg,(5,5),0)
gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
img_hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
lower_yellow = np.array([20, 100, 100], dtype = np.uint8)
upper_yellow = np.array([30, 255, 255], dtype = np.uint8)
mask_yellow = cv2.inRange(img_hsv, lower_yellow, upper_yellow)
mask_white = cv2.inRange(gray, 250, 255)
mask_yw = cv2.bitwise_or(mask_white, mask_yellow)
mask_yw_image = cv2.bitwise_and(gray, mask_yw)
return mask_yw_image
def undistort(img, mtx, dist):
undistort = cv2.undistort(img, mtx, dist, None, mtx)
return undistort
def prepresocess(img):
blur = cv2.GaussianBlur(img,(3,3),0)
edges = cv2.Canny(blur,300,300)
return edges
def warpImage(img, H):
h,w,_ = img.shape
return cv2.warpPerspective(img, H, (w,h))
def getLaneStart(warpedBin, mid, imgShow):
h,w = warpedBin.shape
hist = warpedBin.sum(axis=0)
leftStart = np.argmax(hist[:mid])
rightStart = np.argmax(hist[mid:])
leftStartPoint = (leftStart, h)
leftEndPoint = (leftStart, 0)
rightStartPoint = (mid+rightStart, h)
rightEndPoint = (mid+rightStart, 0)
# imgShow = warpedBin.copy()
color = (0,0,255)
thickness = 7
imgShow = cv2.line(imgShow, leftStartPoint, leftEndPoint, color, thickness)
imgShow = cv2.line(imgShow, rightStartPoint, rightEndPoint, color, thickness)
return imgShow, leftStart, rightStart+mid
def rect(img, maxBoxes, leftCentre, rightCentre, warpedBin):
h,w,_ = img.shape
image = img.copy()
h_box = h//maxBoxes
color = (0,255,0)
thickness = 3
leftLanePoints = []
rightLanePoints = []
margin = 100
for i in range(maxBoxes):
left_start_point = (leftCentre - margin , h_box*(maxBoxes - i - 1))
left_end_point = (leftCentre + margin, h_box*(maxBoxes - i))
right_start_point = (rightCentre - margin, h_box*(maxBoxes - i - 1))
right_end_point = (rightCentre + margin, h_box*(maxBoxes - i))
small_patch = warpedBin[left_start_point[1]:left_end_point[1], left_start_point[0]:left_end_point[0]]
# maximum_in_patch = small_patch.max(axis=0)
y,x = small_patch.nonzero()
if len(x)>15:
x = x + left_start_point[0]
y = y + left_start_point[1]
for xx in range(len(x)):
image = cv2.circle(image, (x[xx],y[xx]), 1, color, -1)
leftLanePoints.append((x[xx],y[xx]))
#### set new centre
leftCentre = int(x.mean())
small_patch = warpedBin[right_start_point[1]:right_end_point[1], right_start_point[0]:right_end_point[0]]
y,x = small_patch.nonzero()
if len(x)>15:
x = x + right_start_point[0]
y = y + right_start_point[1]
for xx in range(len(x)):
image = cv2.circle(image, (x[xx],y[xx]), 1, color, -1)
rightLanePoints.append((x[xx], y[xx]))
### Set new right centre
rightCentre = int(x.mean())
image = cv2.rectangle(image, left_start_point, left_end_point, color, thickness)
image = cv2.rectangle(image, right_start_point, right_end_point, color, thickness)
l_x, l_y = [i[0] for i in leftLanePoints], [i[1] for i in leftLanePoints]
r_x, r_y = [i[0] for i in rightLanePoints], [i[1] for i in rightLanePoints]
leftLane = []
rightLane = []
try:
L = np.polyfit(l_y, l_x, 2)
LP = np.poly1d(L)
R = np.polyfit(r_y, r_x, 2)
LR = np.poly1d(R)
draw_x = list(range(0, h))
draw_yl = [LP(i) for i in draw_x]
draw_yr = [LR(i) for i in draw_x]
for i_x in draw_x:
leftLane.append((int(LP(i_x)), i_x))
rightLane.append((int(LR(i_x)), i_x))
image = cv2.circle(image, (int(LP(i_x)), i_x), 3, color, -1)
image = cv2.circle(image, (int(LR(i_x)), i_x), 3, color, -1)
except:
pass
return image, leftLane, rightLane
def main(Args):
VideoPath = Args.VideoPath
saveImg = Args.saveImgs
saveVideo = Args.saveVideo
K = np.array([[9.037596e+02, 0.000000e+00, 6.957519e+02],
[0.000000e+00, 9.019653e+02, 2.242509e+02],
[0.000000e+00, 0.000000e+00, 1.000000e+00]])
D = np.array([[-3.639558e-01, 1.788651e-01, 6.029694e-04, -3.922424e-04, -5.382460e-02]])
Hpoints = np.array([[275,473],[886,473],[819,394],[401,394]])
box_points = np.array([[275,473],[886,473],[886,394],[275,394]]) # bird-eye view world points of a sqaure
H = cv2.findHomography(Hpoints, box_points) # finding the homography matrix from image to world (bird-eye)
Hinv = np.linalg.inv(H[0]) # inverse of homography
plt.ion()
mid = 600
if(saveVideo):
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
vw = cv2.VideoWriter("data_output.avi", fourcc, 30, (1392, 512))
cap = cv2.VideoCapture(VideoPath)
while (cap.isOpened()):
ret, img1 = cap.read()
if(not ret):
break
img1 = undistort(img1, K, D)
img = warpImage(img1, H[0])
if saveImg:
cv2.imwrite("pics/bird_view.jpg",img)
img_ = binary(img)
if saveImg:
cv2.imwrite("pics/Binary.jpg",img_)
# cv2.imshow("Warped", img_)
_, leftStart, rightStart = getLaneStart(img_, 600, img.copy())
if saveImg:
cv2.imwrite("pics/findStart.jpg",_)
# cv2.imshow("Lane", getLaneStart(img_, 600, img.copy()))
maskedImage, leftLane_, rightLane_ = rect(img, 16, leftStart, rightStart, img_)
if saveImg:
cv2.imwrite("pics/lanes.jpg",maskedImage)
#############################################################
# Following line overlays transparent rectangle over the image
image = img1.copy()
if len(leftLane_)!=0 and len(rightLane_)!=0:
leftLane__ = np.array(leftLane_).T
leftLane__ = np.vstack((leftLane__, np.ones([1, leftLane__.shape[1]])))
leftLane = Hinv.dot(leftLane__)
leftLane[0,:] = leftLane[0,:]//leftLane[2,:]
leftLane[1,:] = leftLane[1,:]//leftLane[2,:]
leftLane[2,:] = leftLane[2,:]//leftLane[2,:]
rightLane__ = np.array(rightLane_).T
rightLane__ = np.vstack((rightLane__, np.ones([1, rightLane__.shape[1]])))
rightLane = Hinv.dot(rightLane__)
rightLane[0,:] = rightLane[0,:]//rightLane[2,:]
rightLane[1,:] = rightLane[1,:]//rightLane[2,:]
rightLane[2,:] = rightLane[2,:]//rightLane[2,:]
y_left_min_index, y_left_max_index = np.argmin(leftLane[1,:]), np.argmax(leftLane[1,:])
y_right_min_index, y_right_max_index = np.argmin(rightLane[1,:]), np.argmax(rightLane[1,:])
turn_left = leftLane[0, y_left_min_index] - leftLane[0, y_left_max_index]
turn_right = rightLane[0, y_right_min_index] - rightLane[0, y_right_max_index]
turn = turn_left/turn_right
if turn>0 and np.abs(turn_left) > 500:
font = cv2.FONT_HERSHEY_SIMPLEX
org = (50, 50)
fontScale = 1
color_ = (0, 0, 255)
thickness_ = 4
img1 = cv2.putText(image, 'Left turn', org, font,
fontScale, color_, thickness_, cv2.LINE_AA)
elif turn<0 and np.abs(turn_right) > 500:
font = cv2.FONT_HERSHEY_SIMPLEX
org = (50, 50)
fontScale = 1
color_ = (0, 0, 255)
thickness_ = 4
img1 = cv2.putText(image, 'Right turn', org, font,
fontScale, color_, thickness_, cv2.LINE_AA)
else:
font = cv2.FONT_HERSHEY_SIMPLEX
org = (50, 50)
fontScale = 1
color_ = (0, 0, 255)
thickness_ = 4
img1 = cv2.putText(image, 'Straight', org, font,
fontScale, color_, thickness_, cv2.LINE_AA)
for i in range(min(leftLane.shape[1], rightLane.shape[1])):
try:
image[int(leftLane[1,i]), int(leftLane[0,i]):int(rightLane[0,i]),:] = np.array([0,255,0])
except:
pass
alpha = 0.4 # Transparency factor.
image_new = cv2.addWeighted(image, alpha, img1, 1 - alpha, 0)
cv2.imshow("T",image_new)
if saveImg:
cv2.imwrite("pics/FinalImage.jpg", image_new)
if(saveVideo):
vw.write(image_new)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
plt.ioff()
if(saveVideo):
vw.release()
cv2.destroyAllWindows()
# cap.release()
if __name__ == '__main__':
Parser = argparse.ArgumentParser()
Parser.add_argument('--VideoPath', default="./data/data.avi", help='Path of the input video')
Parser.add_argument('--saveVideo', type=int, default= 0, help='Set 1 to save final output as a video')
Parser.add_argument('--saveImgs', type=int, default= 0, help='Set 1 to save pipeline processing images')
Args = Parser.parse_args()
main(Args)