-
Notifications
You must be signed in to change notification settings - Fork 586
/
Copy pathopensearch.py
executable file
·317 lines (263 loc) · 12.5 KB
/
opensearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#!/usr/bin/env python
import requests
import json
from json import encoder
import sys
from lxml import etree
from six.moves.urllib import request as urllib2
import six
from tqdm import tqdm
import ec2
def add_pretty_names(instances):
family_names = {
"t2": "T2 General Purpose",
"t3": "T3 General Purpose",
"m3": "M3 General Purpose",
"m4": "M4 General Purpose",
"m5": "M5 General Purpose",
"m6g": "M6G General Purpose",
"c4": "C4 Compute Optimized",
"c5": "C5 Compute Optimized",
"c6g": "C6G Compute Optimized",
"r3": "R3 Memory Optimized",
"r4": "R4 Memory Optimized",
"r5": "R5 Memory Optimized",
"r6g": "R6G Memory Optimized",
"r6gd": "R6GD Memory Optimized (NVME SSD)",
"i2": "I2 Storage Optimized",
"i3": "I3 Storage Optimized",
}
for k in instances:
i = instances[k]
# instance type format looks like "dc1.large"
pieces = i["instance_type"].split(".")
family = pieces[0]
short = pieces[1]
prefix = family_names.get(family, family.upper())
extra = None
if short.startswith("2x"):
extra = "Double"
elif short.startswith("4x"):
extra = "Quadruple"
if short.startswith("8x"):
extra = "Eight"
if short.startswith("10x"):
extra = "Deca"
elif short.startswith("12x"):
extra = "12xlarge"
elif short.startswith("16x"):
extra = "16xlarge"
elif short.startswith("x"):
extra = ""
bits = [prefix]
if extra is not None:
bits.extend([extra, "Extra"])
short = "Large"
bits.append(short.capitalize())
i["pretty_name"] = " ".join([b for b in bits if b])
def add_volume_quotas(instances):
os_quotas_url = "https://docs.aws.amazon.com/opensearch-service/latest/developerguide/limits.html"
tree = etree.parse(urllib2.urlopen(os_quotas_url), etree.HTMLParser())
table = tree.xpath('//div[@class="table-contents disable-scroll"]//table')[1]
rows = table.xpath(".//tr[./td]")
for r in rows:
# .lower() as keys were coming back with odd capitalization.
instance_type = etree.tostring(r[0], method="text").strip().decode().lower()
min_ebs = etree.tostring(r[1], method="text").strip().decode()
max_ebs_gp2 = etree.tostring(r[2], method="text").strip().decode()
max_ebs_gp3 = etree.tostring(r[3], method="text").strip().decode()
if instance_type in instances:
instances[instance_type]["min_ebs"] = min_ebs
instances[instance_type]["max_ebs_gp2"] = max_ebs_gp2
instances[instance_type]["max_ebs_gp3"] = max_ebs_gp3
table = tree.xpath('//div[@class="table-contents disable-scroll"]//table')[2]
rows = table.xpath(".//tr[./td]")
for r in rows:
instance_type = etree.tostring(r[0], method="text").strip().decode()
max_http_payload = etree.tostring(r[1], method="text").strip().decode()
if instance_type in instances:
instances[instance_type]["max_http_payload"] = max_http_payload
# Manually add ultrawarm storage
instances["ultrawarm1.medium.search"]["max_storage"] = "1.5 TiB"
instances["ultrawarm1.large.search"]["max_storage"] = "20 TiB"
def scrape(output_file, input_file=None):
# if an argument is given, use that as the path for the json file
if input_file:
with open(input_file) as json_data:
data = json.load(json_data)
else:
price_index = "https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/AmazonES/current/index.json"
index = requests.get(price_index)
data = index.json()
caches_instances = {}
instances = {}
# region mapping, someone thought it was handy not to include the region id's :(
regions = ec2.get_region_descriptions()
# loop through products, and only fetch available instances for now
for sku, product in tqdm(six.iteritems(data["products"])):
if (product.get("productFamily", None) == "Amazon OpenSearch Service Instance"
and product.get("attributes", {}).get("operation", None)
!= "DirectQueryAmazonS3GDCOCU"):
attributes = product.get("attributes", {})
if "instanceType" not in attributes:
continue
instance_type = attributes["instanceType"]
# map the region
location = ec2.canonicalize_location(attributes["location"])
if location == "Any":
region = "us-east-1"
elif location == "Asia Pacific (Osaka-Local)":
# at one point this region was local but was upgraded to a standard region
# however some SKUs still reference the old region
region = "ap-northeast-3"
regions[location] = region
elif location not in regions.values():
region = attributes["regionCode"]
regions[location] = region
else:
region = regions[location]
# set the attributes in line with the ec2 index
attributes["region"] = region
attributes["memory"] = attributes["memoryGib"].split(" ")[0]
attributes["family"] = attributes["instanceFamily"]
attributes["instance_type"] = instance_type
attributes["pricing"] = {}
attributes["pricing"][region] = {}
caches_instances[sku] = attributes
if instance_type not in instances.keys():
# delete some attributes that are inconsistent among skus
new_attributes = attributes.copy() # make copy so we can keep these attributes with the sku
new_attributes.pop("location", None)
new_attributes.pop("locationType", None)
new_attributes.pop("operation", None)
new_attributes.pop("region", None)
new_attributes.pop("usagetype", None)
new_attributes["pricing"] = attributes["pricing"]
new_attributes["regions"] = {}
instances[instance_type] = new_attributes
# Parse ondemand pricing
for sku, offers in six.iteritems(data["terms"]["OnDemand"]):
for code, offer in six.iteritems(offers):
for key, dimension in six.iteritems(offer["priceDimensions"]):
# skip these types of charges
if any(
descr in dimension["description"].lower()
for descr in [
"transfer",
"global",
"iops",
"requests",
"multi-az",
]
):
continue
instance = caches_instances.get(sku)
if not instance:
# print(f"WARNING: Received on demand pricing info for unknown sku={sku}")
continue
region = instance["region"]
instance_type = instance["instance_type"]
if region not in instances[instance_type]["pricing"]:
# Initialise pricing for the instance_type
instances[instance_type]["pricing"][region] = {}
instances[instance_type]["pricing"][region] = {
"ondemand": float(dimension["pricePerUnit"]["USD"])
}
# build the list of regions where each instance is available
# we have to do a reverse lookup from the regions list
l = ""
for l, r in regions.items():
if instance["region"] == r:
location = l
break
instances[instance["instance_type"]]["regions"][instance["region"]] = l
reserved_mapping = {
"1yr All Upfront": "yrTerm1.allUpfront",
"1yr Partial Upfront": "yrTerm1.partialUpfront",
"1yr No Upfront": "yrTerm1.noUpfront",
"3yr All Upfront": "yrTerm3.allUpfront",
"3yr Partial Upfront": "yrTerm3.partialUpfront",
"3yr No Upfront": "yrTerm3.noUpfront",
}
# Parse reserved pricing
for sku, offers in six.iteritems(data["terms"]["Reserved"]):
for code, offer in six.iteritems(offers):
for key, dimension in six.iteritems(offer["priceDimensions"]):
# print()
# print()
instance = caches_instances.get(sku)
if not instance:
print(
f"WARNING: Received reserved pricing info for unknown sku={sku}"
)
continue
region = instance["region"]
instance_type = instance["instance_type"]
# create a regional hash
if region not in instance["pricing"]:
instance["pricing"][region] = {}
# create a reserved hash
if "reserved" not in instances[instance_type]["pricing"][region]:
instances[instance_type]["pricing"][region]["reserved"] = {}
reserved_type = f"%s %s" % (
offer["termAttributes"]["LeaseContractLength"],
offer["termAttributes"]["PurchaseOption"],
)
instances[instance_type]["pricing"][region]["reserved"][
"%s-%s"
% (reserved_mapping[reserved_type], dimension["unit"].lower())
] = float(dimension["pricePerUnit"]["USD"])
# Calculate all reserved effective pricings (upfront hourly + hourly price)
# Since Light, Medium and Heavy utilization are from previous generations and are not available for choosing
# anymore in AWS console, we are not calculating it
for instance_type, instance in six.iteritems(instances):
for region, pricing in six.iteritems(instance["pricing"]):
for engine, prices in six.iteritems(pricing):
if "reserved" not in engine:
continue
try:
# no multi-az here
reserved_prices = {}
if "yrTerm3.partialUpfront-quantity" in prices:
reserved_prices["yrTerm3Standard.partialUpfront"] = (
prices["yrTerm3.partialUpfront-quantity"] / (365 * 3) / 24
) + prices["yrTerm3.partialUpfront-hrs"]
if "yrTerm1.partialUpfront-quantity" in prices:
reserved_prices["yrTerm1Standard.partialUpfront"] = (
prices["yrTerm1.partialUpfront-quantity"] / 365 / 24
) + prices["yrTerm1.partialUpfront-hrs"]
if "yrTerm3.allUpfront-quantity" in prices:
reserved_prices["yrTerm3Standard.allUpfront"] = (
prices["yrTerm3.allUpfront-quantity"] / (365 * 3) / 24
) + prices["yrTerm3.allUpfront-hrs"]
if "yrTerm1.allUpfront-quantity" in prices:
reserved_prices["yrTerm1Standard.allUpfront"] = (
prices["yrTerm1.allUpfront-quantity"] / 365 / 24
) + prices["yrTerm1.allUpfront-hrs"]
if "yrTerm1.noUpfront-hrs" in prices:
reserved_prices["yrTerm1Standard.noUpfront"] = prices[
"yrTerm1.noUpfront-hrs"
]
if "yrTerm3.noUpfront-hrs" in prices:
reserved_prices["yrTerm3Standard.noUpfront"] = prices[
"yrTerm3.noUpfront-hrs"
]
instances[instance_type]["pricing"][region]["reserved"] = reserved_prices
except Exception as e:
print(
"ERROR: Trouble generating Cache reserved price for {}: {!r}".format(
instance_type, e
)
)
add_pretty_names(instances)
add_volume_quotas(instances)
# write output to file
encoder.FLOAT_REPR = lambda o: format(o, ".5f")
with open(output_file, "w+") as outfile:
json.dump(list(instances.values()), outfile, indent=1)
if __name__ == "__main__":
input_file = None
if len(sys.argv) > 1:
input_file = sys.argv[1]
output_file = "./www/opensearch/instances.json"
scrape(output_file, input_file)