diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 000000000..e69de29bb diff --git a/CNAME b/CNAME new file mode 100644 index 000000000..ad1c2a237 --- /dev/null +++ b/CNAME @@ -0,0 +1 @@ +docs.vanna.ai \ No newline at end of file diff --git a/connect-to-bigquery.html b/connect-to-bigquery.html new file mode 100644 index 000000000..cc8e046f2 --- /dev/null +++ b/connect-to-bigquery.html @@ -0,0 +1,7570 @@ + + + + + + + + + + + + + +Vanna Docs: + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ + diff --git a/connect-to-postgres.html b/connect-to-postgres.html new file mode 100644 index 000000000..061494695 --- /dev/null +++ b/connect-to-postgres.html @@ -0,0 +1,7516 @@ + + + + + + + + + + + + + +Vanna Docs: + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+ +
+
+ +
+ +
+
+ + diff --git a/connect-to-snowflake.html b/connect-to-snowflake.html new file mode 100644 index 000000000..34b92e814 --- /dev/null +++ b/connect-to-snowflake.html @@ -0,0 +1,7510 @@ + + + + + + + + + + + + + +Vanna Docs: + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+ +
+
+ +
+ +
+
+ + diff --git a/databases.html b/databases.html new file mode 100644 index 000000000..16fcee1cf --- /dev/null +++ b/databases.html @@ -0,0 +1,7685 @@ + + + + + + + + + + + + + +Vanna Docs: Databases + + + + + + + + + + + + + + + + + + + + +
+ + + + Run Using Colab + + + + Open in GitHub + + +
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+
+ +
+
+ + diff --git a/databases.md b/databases.md new file mode 100644 index 000000000..6924d34c2 --- /dev/null +++ b/databases.md @@ -0,0 +1,142 @@ +# How to use Vanna with various databases + +You can use Vanna with any database that you can connect to via Python. Here are some examples of how to connect to various databases. + +All you have to do is provide Vanna with a function that takes in a SQL query and returns a Pandas DataFrame. Here are some examples of how to do that. + +## **PostgreSQL** + +```python +import pandas as pd +import psycopg2 + +conn_details = {...} # fill this with your connection details +conn_postgres = psycopg2.connect(**conn_details) + +def run_sql_postgres(sql: str) -> pd.DataFrame: + df = pd.read_sql_query(sql, conn_postgres) + return df + +vn.run_sql = run_sql_postgres +``` + +## **Snowflake** + +We have a built-in function for Snowflake, so you don't need to write your own. + +```python +vn.connect_to_snowflake(account='my-account', username='my-username', password='my-password', database='my-database') +``` + +```python +import pandas as pd +from snowflake.connector.pandas_tools import pd_read_sql +from snowflake.connector import connect + +conn_details = {...} # fill this with your connection details +conn_snowflake = connect(**conn_details) + +def run_sql_snowflake(sql: str) -> pd.DataFrame: + df = pd_read_sql(sql, conn_snowflake) + return df + +vn.run_sql = run_sql_snowflake +``` + +## **Google BigQuery** + +```python +from google.cloud import bigquery +import pandas as pd + +project_id = 'your-project-id' # replace with your Project ID +client_bigquery = bigquery.Client(project=project_id) + +def run_sql_bigquery(sql: str) -> pd.DataFrame: + df = client_bigquery.query(sql).to_dataframe() + return df + +vn.run_sql = run_sql_bigquery +``` + +## **Amazon Athena** + +```python +import pandas as pd +from pyathena import connect + +conn_details = {...} # fill this with your connection details +conn_athena = connect(**conn_details) + +def run_sql_athena(sql: str) -> pd.DataFrame: + df = pd.read_sql(sql, conn_athena) + return df + +vn.run_sql = run_sql_athena +``` + +## **Amazon Redshift** + +```python +import pandas as pd +import psycopg2 + +conn_details = {...} # fill this with your connection details +conn_redshift = psycopg2.connect(**conn_details) + +def run_sql_redshift(sql: str) -> pd.DataFrame: + df = pd.read_sql_query(sql, conn_redshift) + return df + +vn.run_sql = run_sql_redshift +``` + +Sure, here is an example for Google Cloud SQL using the MySQL connector: + +## **Google Cloud SQL (MySQL)** + +```python +import pandas as pd +import mysql.connector + +conn_details = {...} # fill this with your connection details +conn_google_cloud_sql = mysql.connector.connect(**conn_details) + +def run_sql_google_cloud_sql(sql: str) -> pd.DataFrame: + df = pd.read_sql(sql, conn_google_cloud_sql) + return df +``` + +Note: Google Cloud SQL supports MySQL, PostgreSQL, and SQL Server. The above example uses MySQL. If you are using PostgreSQL or SQL Server, you should use the appropriate connector. + +## **SQLite** + +```python +import sqlite3 +import pandas as pd + +db_path = 'path_to_your_db' # replace with your SQLite DB path +conn_sqlite = sqlite3.connect(db_path) + +def run_sql_sqlite(sql: str) -> pd.DataFrame: + df = pd.read_sql_query(sql, conn_sqlite) + return df + +vn.run_sql = run_sql_sqlite +``` + +## **Microsoft SQL Server** + +```python +import pandas as pd +import pyodbc + +conn_details = {...} # fill this with your connection details +conn_sql_server = pyodbc.connect(**conn_details) + +def run_sql_sql_server(sql: str) -> pd.DataFrame: + df = pd.read_sql(sql, conn_sql_server) + return df + +vn.run_sql = run_sql_sql_server +``` diff --git a/getting-started.html b/getting-started.html new file mode 100644 index 000000000..bf2a27348 --- /dev/null +++ b/getting-started.html @@ -0,0 +1,7989 @@ + + + + + + + + + + + + + +Vanna Docs: Getting Started + + + + + + + + + + + + + + + + + + + + +
+ + + + Run Using Colab + + + + Open in GitHub + + +
+ +
+
+ +
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ + +
+ + +
+ + +
+
+ +
+ +
+
+ + diff --git a/index.html b/index.html new file mode 100644 index 000000000..a54c0f210 --- /dev/null +++ b/index.html @@ -0,0 +1,7511 @@ + + + + + + + + + + + + + +Vanna Docs: How It Works + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+
+ +
+
+ +
+
+ +
+
+ + diff --git a/index.md b/index.md new file mode 100644 index 000000000..02d2fc636 --- /dev/null +++ b/index.md @@ -0,0 +1,239 @@ +# Vanna.AI - Personalized AI SQL Agent + +**Let Vanna.AI write your nasty SQL for you**. Vanna is a Python based AI SQL agent trained on your schema that writes complex SQL in seconds. `pip install vanna` to get started now. + + + +## An example + +A business user asks you **"who are the top 2 customers in each region?"**. Right in the middle of lunch. And they need it for a presentation this afternoon. 😡😡😡 + +### The old way 😡 😫 💩 +Simple question to ask, not so fun to answer. You spend over an hour a) finding the tables, b) figuring out out the joins, c) look up the syntax for ranking, d) putting this into a CTE, e) filtering by rank, and f) choosing the correct metrics. Finally, you come up with this ugly mess - + +```sql +with ranked_customers as (SELECT c.c_name as customer_name, + r.r_name as region_name, + row_number() OVER (PARTITION BY r.r_name + ORDER BY sum(l.l_quantity * l.l_extendedprice) desc) as rank + FROM snowflake_sample_data.tpch_sf1.customer c join snowflake_sample_data.tpch_sf1.orders o + ON c.c_custkey = o.o_custkey join snowflake_sample_data.tpch_sf1.lineitem l + ON o.o_orderkey = l.l_orderkey join snowflake_sample_data.tpch_sf1.nation n + ON c.c_nationkey = n.n_nationkey join snowflake_sample_data.tpch_sf1.region r + ON n.n_regionkey = r.r_regionkey + GROUP BY customer_name, region_name) +SELECT region_name, + customer_name +FROM ranked_customers +WHERE rank <= 2; +``` + +And you had to skip your lunch. **HANGRY!** + +### The Vanna way 😍 🌟 🚀 +With Vanna, you train up a custom model on your data warehouse, and simply enter this in your Jupyter Notebook - + +```python +import vanna as vn +vn.set_model('your-model') +vn.ask('who are the top 2 customers in each region?') +``` + +Vanna generates that nasty SQL above for you, runs it (locally & securely) and gives you back a Dataframe in seconds: + +| region_name | customer_name | total_sales | +| ----------- | ------------- | ----------- | +| ASIA | Customer#000000001 | 68127.72 | +| ASIA | Customer#000000002 | 65898.69 | +... + +And you ate your lunch in peace. **YUMMY!** + +## How Vanna works +Vanna works in two easy steps - train a model on your data, and then ask questions. + +1. **Train a model on your data**. +2. **Ask questions**. + +When you ask a question, we utilize a custom model for your dataset to generate SQL, as seen below. Your model performance and accuracy depends on the quality and quantity of training data you use to train your model. +how-vanna-works + + + +## Why Vanna? + +1. **High accuracy on complex datasets.** + - Vanna’s capabilities are tied to the training data you give it + - More training data means better accuracy for large and complex datasets +2. **Secure and private.** + - Your database contents are never sent to Vanna’s servers + - We only see the bare minimum - schemas & queries. +3. **Isolated, custom model.** + - You train a custom model specific to your database and your schema. + - Nobody else can use your model or view your model’s training data unless you choose to add members to your model or make it public + - We use a combination of third-party foundational models (OpenAI, Google) and our own LLM. +4. **Self learning.** + - As you use Vanna more, your model continuously improves as we augment your training data +5. **Supports many databases.** + - We have out-of-the-box support Snowflake, BigQuery, Postgres + - You can easily make a connector for any [database](https://docs.vanna.ai/databases/) +6. **Pretrained models.** + - If you’re a data provider you can publish your models for anyone to use + - As part of our roadmap, we are in the process of pre-training models for common datasets (Google Ads, Facebook ads, etc) +7. **Choose your front end.** + - Start in a Jupyter Notebook. + - Expose to business users via Slackbot, web app, Streamlit app, or Excel plugin. + - Even integrate in your web app for customers. + +## Getting started +You can start by [automatically training Vanna (currently works for Snowflake)](https://docs.vanna.ai/notebooks/vn-train/) or add manual training data. + +### Train with DDL Statements +If you prefer to manually train, you do not need to connect to a database. You can use the train function with other parmaeters like ddl + + +```python +vn.train(ddl=""" + CREATE TABLE IF NOT EXISTS my-table ( + id INT PRIMARY KEY, + name VARCHAR(100), + age INT + ) +""") +``` + +### Train with Documentation +Sometimes you may want to add documentation about your business terminology or definitions. + +```python +vn.train(documentation="Our business defines OTIF score as the percentage of orders that are delivered on time and in full") +``` + +### Train with SQL +You can also add SQL queries to your training data. This is useful if you have some queries already laying around. You can just copy and paste those from your editor to begin generating new SQL. + +```python +vn.train(sql="SELECT * FROM my-table WHERE name = 'John Doe'") +``` + + + +## Asking questions +```python +vn.ask("What are the top 10 customers by sales?") +``` + + SELECT c.c_name as customer_name, + sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales + FROM snowflake_sample_data.tpch_sf1.lineitem l join snowflake_sample_data.tpch_sf1.orders o + ON l.l_orderkey = o.o_orderkey join snowflake_sample_data.tpch_sf1.customer c + ON o.o_custkey = c.c_custkey + GROUP BY customer_name + ORDER BY total_sales desc limit 10; + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
CUSTOMER_NAMETOTAL_SALES
0Customer#0001435006757566.0218
1Customer#0000952576294115.3340
2Customer#0000871156184649.5176
3Customer#0001311136080943.8305
4Customer#0001343806075141.9635
5Customer#0001038346059770.3232
6Customer#0000696826057779.0348
7Customer#0001020226039653.6335
8Customer#0000985876027021.5855
9Customer#0000646605905659.6159
+
+ + + + +![png](notebooks/vn-ask_files/vn-ask_10_2.png) + + + + +AI-generated follow-up questions: + +* What is the country name for each of the top 10 customers by sales? +* How many orders does each of the top 10 customers by sales have? +* What is the total revenue for each of the top 10 customers by sales? +* What are the customer names and total sales for customers in the United States? +* Which customers in Africa have returned the most parts with a gross value? +* What are the total sales for the top 3 customers? +* What are the customer names and total sales for the top 5 customers? +* What are the total sales for customers in Europe? +* How many customers are there in each country? + +## More resources + - [Full Documentation](https://docs.vanna.ai) + - [Website](https://vanna.ai) + - [Slack channel for support](https://join.slack.com/t/vanna-ai/shared_invite/zt-1unu0ipog-iE33QCoimQiBDxf2o7h97w) + - [LinkedIn](https://www.linkedin.com/company/vanna-ai/) diff --git a/intro-to-vanna.md b/intro-to-vanna.md new file mode 100644 index 000000000..d935082e0 --- /dev/null +++ b/intro-to-vanna.md @@ -0,0 +1,64 @@ +# Intro to Vanna: A Python-based AI SQL co-pilot + +**TLDR**: We help data people that know Python write SQL faster using AI. [See our starter notebook here](notebooks/vn-ask.md). + +## The deluge of data + +We are bathing in an ocean of data, sitting in Snowflake or BigQuery, that is brimming with potential insights. Yet only a small fraction of people in an enterprise have the two skills required to harness the data — + +1. A solid comprehension of advanced SQL, and +2. A comprehensive knowledge of the data structure & schema + +## The burden of being data-savvy + +Since you are reading this, chances are you are one of those fortunate few (data analysts, data scientists, data engineers, etc) with those abilities. It’s an invaluable skill, but you also get hit tons requests requiring you to write complex SQL queries. Annoying! + +## Introducing Vanna, the SQL co-pilot + +Vanna, at its core, is a co-pilot to Python & SQL savvy data people to to streamline the process of writing custom SQL on your company’s data warehouse using AI and LLMs. Most of our users use our Python package directly via Jupyter Notebooks ([starter notebook here](notebooks/vn-ask.md)) — + +```python +sql = vn.generate_sql(question='What are the top 10 customers by Sales?') +print(sql) +``` + +And here are the results — + +```sql +SELECT customer_name, + total_sales +FROM (SELECT c.c_name as customer_name, + sum(l.l_extendedprice * (1 - l.l_discount)) as total_sales, + row_number() OVER (ORDER BY sum(l.l_extendedprice * (1 - l.l_discount)) desc) as rank + FROM snowflake_sample_data.tpch_sf1.lineitem l join snowflake_sample_data.tpch_sf1.orders o + ON l.l_orderkey = o.o_orderkey join snowflake_sample_data.tpch_sf1.customer c + ON o.o_custkey = c.c_custkey + GROUP BY customer_name) +WHERE rank <= 10; +``` + +## Getting started with Vanna in a Notebook + +Vanna is super easy to get started with — + +1. **Grab an API key** directly through the notebook +2. **Train a custom model** on some past queries from your data warehouse +3. **Ask questions in plain English** and get back SQL that you can run in your workflow + +Check out the full starter notebook here. + +Vanna is built with a privacy-first and security-first design — **your data never leaves your environment**. + +## Using Vanna with a Streamlit front end + +[Streamlit](https://streamlit.io/) is an open source pure Python front end. We have built an UI for Vanna on top of Streamlit, that you can either use directly (eg our hosted version), and that you can clone, download, optionally modify, and self host. + +If you choose to self host it, you can run Vanna with a UI without any data leaving your environment. + +![Image](https://miro.medium.com/v2/resize:fit:640/format:webp/1*PmScp647UWIaxUatib_4SQ.png) + +[Check out the Streamlit UI here](https://github.com/vanna-ai/vanna-streamlit). + +## Conclusion + +Vanna is a powerful tool for data people that know Python to write SQL faster using AI. It's easy to get started with, and you can even use it with a Streamlit front end for a more interactive experience. Best of all, it's built with a privacy-first and security-first design, so your data never leaves your environment. Give it a try and see how it can streamline your SQL writing process. \ No newline at end of file diff --git a/local.html b/local.html new file mode 100644 index 000000000..a42fe437f --- /dev/null +++ b/local.html @@ -0,0 +1,7871 @@ + + + + + + + + + + + + + +Vanna Docs: Running Locally + + + + + + + + + + + + + + + + + + + + +
+ + + + Run Using Colab + + + + Open in GitHub + + +
+ +
+ +
+ +
+
+ +
+ +
+
+ +
+ + +
+
+ +
+ +
+
+ +
+ + +
+
+ +
+ + +
+ +
+
+ +
+ +
+
+ + diff --git a/manual-train.html b/manual-train.html new file mode 100644 index 000000000..715e77917 --- /dev/null +++ b/manual-train.html @@ -0,0 +1,7865 @@ + + + + + + + + + + + + + +Vanna Docs: Other Databases + + + + + + + + + + + + + + + + + + + + +
+ + + + Run Using Colab + + + + Open in GitHub + + +
+ +
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ +
+
+ +
+ + +
+
+ +
+ +
+
+ +
+ +
+
+ + diff --git a/onboarding.md b/onboarding.md new file mode 100644 index 000000000..8f15aa78b --- /dev/null +++ b/onboarding.md @@ -0,0 +1,30 @@ +## What do I need to do to use **Vanna.AI**? +Vanna.AI uses a combination of documentation and historical question and SQL pairs to generate SQL from natural language. + +### Step 1: Train **Vanna.AI** +- Give **Vanna.AI** sample SQL +- **Vanna.AI** will try to guess the question +- Verify the question is correct +```mermaid +flowchart LR + Generate[vn.generate_question] + Question[Question] + Verify{Is the question correct?} + SQL --> Generate + Generate --> Question + Question --> Verify + Verify -- Yes --> Store[vn.store_sql] + Verify -- No --> Update[Update the Question] + Update --> Store + +``` + +### Step 2: Ask **Vanna.AI** a Question +```mermaid +flowchart LR + Question[Question] + Generate[vn.generate_sql] + SQL[SQL] + Question --> Generate + Generate --> SQL +``` diff --git a/reference.md b/reference.md new file mode 100644 index 000000000..fc4459af9 --- /dev/null +++ b/reference.md @@ -0,0 +1,4 @@ +# Vanna Package Full Reference +::: vanna + options: + show_source: false \ No newline at end of file diff --git a/search.js b/search.js new file mode 100644 index 000000000..ea2831a99 --- /dev/null +++ b/search.js @@ -0,0 +1,46 @@ +window.pdocSearch = (function(){ +/** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oSource Code\n\n

View the source code on GitHub: https://github.com/vanna-ai/vanna

\n\n

Basic Usage

\n\n

Getting an API key

\n\n
\n
import vanna as vn\napi_key = vn.get_api_key('my-email@example.com')\nvn.set_api_key(api_key)\n
\n
\n\n

Setting the model

\n\n
\n
vn.set_model('chinook')\n
\n
\n\n

Asking a question

\n\n
\n
vn.ask(question='What are the top 10 artists by sales?')\n
\n
\n\n

vn.ask(...) is a convenience wrapper around vn.generate_sql(...), vn.run_sql(...), vn.generate_plotly_code(...), vn.get_plotly_figure(...), and vn.generate_followup_questions(...).

\n\n

For a runnable notebook where you can ask questions, see here

\n\n

Training

\n\n

There are 3 main types of training data that you can add to a model: SQL, DDL, and documentation.

\n\n
\n
# DDL Statements\nvn.train(ddl='CREATE TABLE employees (id INT, name VARCHAR(255), salary INT)')\n\n# Documentation\nvn.train(documentation='Our organization\\'s definition of sales is the discount price of an item multiplied by the quantity sold.')\n\n# SQL\nvn.train(sql='SELECT AVG(salary) FROM employees')\n
\n
\n\n

vn.train(...) is a convenience wrapper around vn.add_sql(...), vn.add_ddl(...), and vn.add_documentation(...).

\n\n

For a runnable notebook where you can train a model, see here

\n\n

Nomenclature

\n\n\n\n\n \n \n \n\n\n\n\n \n \n \n\n\n \n \n \n\n\n \n \n \n\n\n \n \n \n\n\n \n \n \n\n\n \n \n \n\n\n \n \n \n\n\n \n \n \n\n\n
PrefixDefinitionExamples
vn.set_Sets the variable for the current session[vn.set_model(...)][vanna.set_model]
[vn.set_api_key(...)][vanna.set_api_key]
vn.get_Performs a read-only operation[vn.get_model()][vanna.get_models]
vn.add_Adds something to the model[vn.add_sql(...)][vanna.add_sql]
[vn.add_ddl(...)][vanna.add_ddl]
vn.generate_Generates something using AI based on the information in the model[vn.generate_sql(...)][vanna.generate_sql]
[vn.generate_explanation()][vanna.generate_explanation]
vn.run_Runs code (SQL or Plotly)[vn.run_sql][vanna.run_sql]
vn.remove_Removes something from the model[vn.remove_training_data][vanna.remove_training_data]
vn.update_Updates something in the model[vn.update_model_visibility(...)][vanna.update_model_visibility]
vn.connect_Connects to a database[vn.connect_to_snowflake(...)][vanna.connect_to_snowflake]
\n\n

Permissions

\n\n

By default when you create a model it is private. You can add members or admins to your model or make it public.

\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
User RolePublic ModelPrivate Model
UseTrainUseTrain
Non-Member\u2705\u274c\u274c\u274c
Member\u2705\u274c\u2705\u274c
Admin\u2705\u2705\u2705\u2705
\n\n

Open-Source and Extending

\n\n

Vanna.AI is open-source and extensible. If you'd like to use Vanna without the servers, see an example here.

\n\n

The following is an example of where various functions are implemented in the codebase when using the default \"local\" version of Vanna. vanna.base.VannaBase is the base class which provides a vanna.base.VannaBase.ask and vanna.base.VannaBase.train function. Those rely on abstract methods which are implemented in the subclasses vanna.openai_chat.OpenAI_Chat and vanna.chromadb_vector.ChromaDB_VectorStore. vanna.openai_chat.OpenAI_Chat uses the OpenAI API to generate SQL and Plotly code. vanna.chromadb_vector.ChromaDB_VectorStore uses ChromaDB to store training data and generate embeddings.

\n\n

If you want to use Vanna with other LLMs or databases, you can create your own subclass of vanna.base.VannaBase and implement the abstract methods.

\n\n
flowchart\n subgraph VannaBase\n ask\n train\n end\n\n subgraph OpenAI_Chat\n get_sql_prompt\n submit_prompt\n generate_question\n generate_plotly_code\n end\n\n subgraph ChromaDB_VectorStore\n generate_embedding\n add_question_sql\n add_ddl\n add_documentation\n get_similar_question_sql\n get_related_ddl\n get_related_documentation\n end\n
\n\n

API Reference

\n"}, "vanna.api_key": {"fullname": "vanna.api_key", "modulename": "vanna", "qualname": "api_key", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]", "default_value": "None"}, "vanna.fig_as_img": {"fullname": "vanna.fig_as_img", "modulename": "vanna", "qualname": "fig_as_img", "kind": "variable", "doc": "

\n", "annotation": ": bool", "default_value": "False"}, "vanna.run_sql": {"fullname": "vanna.run_sql", "modulename": "vanna", "qualname": "run_sql", "kind": "variable", "doc": "

Example

\n\n
\n
vn.run_sql = lambda sql: pd.read_sql(sql, engine)\n
\n
\n\n

Set the SQL to DataFrame function for Vanna.AI. This is used in the [vn.ask(...)][vanna.ask] function.\nInstead of setting this directly you can also use [vn.connect_to_snowflake(...)][vanna.connect_to_snowflake] to set this.

\n", "annotation": ": Optional[Callable[[str], pandas.core.frame.DataFrame]]", "default_value": "None"}, "vanna.get_api_key": {"fullname": "vanna.get_api_key", "modulename": "vanna", "qualname": "get_api_key", "kind": "function", "doc": "

Example:

\n\n
\n
vn.get_api_key(email="my-email@example.com")\n
\n
\n\n

Login to the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • email (str): The email address to login with.
  • \n
  • otp_code (Union[str, None]): The OTP code to login with. If None, an OTP code will be sent to the email address.
  • \n
\n\n
Returns:
\n\n
\n

str: The API key.

\n
\n", "signature": "(email: str, otp_code: Optional[str] = None) -> str:", "funcdef": "def"}, "vanna.set_api_key": {"fullname": "vanna.set_api_key", "modulename": "vanna", "qualname": "set_api_key", "kind": "function", "doc": "

Sets the API key for Vanna.AI.

\n\n

Example:

\n\n
\n
api_key = vn.get_api_key(email="my-email@example.com")\nvn.set_api_key(api_key)\n
\n
\n\n
Arguments:
\n\n
    \n
  • key (str): The API key.
  • \n
\n", "signature": "(key: str) -> None:", "funcdef": "def"}, "vanna.get_models": {"fullname": "vanna.get_models", "modulename": "vanna", "qualname": "get_models", "kind": "function", "doc": "

Example:

\n\n
\n
models = vn.get_models()\n
\n
\n\n

List the models that the user is a member of.

\n\n
Returns:
\n\n
\n

List[str]: A list of model names.

\n
\n", "signature": "() -> List[str]:", "funcdef": "def"}, "vanna.create_model": {"fullname": "vanna.create_model", "modulename": "vanna", "qualname": "create_model", "kind": "function", "doc": "

Example:

\n\n
\n
vn.create_model(model="my-model", db_type="postgres")\n
\n
\n\n

Create a new model.

\n\n
Arguments:
\n\n
    \n
  • model (str): The name of the model to create.
  • \n
  • db_type (str): The type of database to use for the model. This can be \"Snowflake\", \"BigQuery\", \"Postgres\", or anything else.
  • \n
\n\n
Returns:
\n\n
\n

bool: True if the model was created successfully, False otherwise.

\n
\n", "signature": "(model: str, db_type: str) -> bool:", "funcdef": "def"}, "vanna.add_user_to_model": {"fullname": "vanna.add_user_to_model", "modulename": "vanna", "qualname": "add_user_to_model", "kind": "function", "doc": "

Example:

\n\n
\n
vn.add_user_to_model(model="my-model", email="user@example.com")\n
\n
\n\n

Add a user to an model.

\n\n
Arguments:
\n\n
    \n
  • model (str): The name of the model to add the user to.
  • \n
  • email (str): The email address of the user to add.
  • \n
  • is_admin (bool): Whether or not the user should be an admin.
  • \n
\n\n
Returns:
\n\n
\n

bool: True if the user was added successfully, False otherwise.

\n
\n", "signature": "(model: str, email: str, is_admin: bool) -> bool:", "funcdef": "def"}, "vanna.update_model_visibility": {"fullname": "vanna.update_model_visibility", "modulename": "vanna", "qualname": "update_model_visibility", "kind": "function", "doc": "

Example:

\n\n
\n
vn.update_model_visibility(public=True)\n
\n
\n\n

Set the visibility of the current model. If a model is visible, anyone can see it. If it is not visible, only members of the model can see it.

\n\n
Arguments:
\n\n
    \n
  • public (bool): Whether or not the model should be publicly visible.
  • \n
\n\n
Returns:
\n\n
\n

bool: True if the model visibility was set successfully, False otherwise.

\n
\n", "signature": "(public: bool) -> bool:", "funcdef": "def"}, "vanna.set_model": {"fullname": "vanna.set_model", "modulename": "vanna", "qualname": "set_model", "kind": "function", "doc": "

Set the models to use for the Vanna.AI API.

\n\n

Example:

\n\n
\n
vn.set_model("my-model")\n
\n
\n\n
Arguments:
\n\n
    \n
  • model (str): The name of the model to use.
  • \n
\n", "signature": "(model: str):", "funcdef": "def"}, "vanna.add_sql": {"fullname": "vanna.add_sql", "modulename": "vanna", "qualname": "add_sql", "kind": "function", "doc": "

Adds a question and its corresponding SQL query to the model's training data. The preferred way to call this is to use [vn.train(sql=...)][vanna.train].

\n\n

Example:

\n\n
\n
vn.add_sql(\n    question="What is the average salary of employees?",\n    sql="SELECT AVG(salary) FROM employees"\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • question (str): The question to store.
  • \n
  • sql (str): The SQL query to store.
  • \n
  • tag (Union[str, None]): A tag to associate with the question and SQL query.
  • \n
\n\n
Returns:
\n\n
\n

bool: True if the question and SQL query were stored successfully, False otherwise.

\n
\n", "signature": "(question: str, sql: str, tag: Optional[str] = 'Manually Trained') -> bool:", "funcdef": "def"}, "vanna.add_ddl": {"fullname": "vanna.add_ddl", "modulename": "vanna", "qualname": "add_ddl", "kind": "function", "doc": "

Adds a DDL statement to the model's training data

\n\n

Example:

\n\n
\n
vn.add_ddl(\n    ddl="CREATE TABLE employees (id INT, name VARCHAR(255), salary INT)"\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • ddl (str): The DDL statement to store.
  • \n
\n\n
Returns:
\n\n
\n

bool: True if the DDL statement was stored successfully, False otherwise.

\n
\n", "signature": "(ddl: str) -> bool:", "funcdef": "def"}, "vanna.add_documentation": {"fullname": "vanna.add_documentation", "modulename": "vanna", "qualname": "add_documentation", "kind": "function", "doc": "

Adds documentation to the model's training data

\n\n

Example:

\n\n
\n
vn.add_documentation(\n    documentation="Our organization's definition of sales is the discount price of an item multiplied by the quantity sold."\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • documentation (str): The documentation string to store.
  • \n
\n\n
Returns:
\n\n
\n

bool: True if the documentation string was stored successfully, False otherwise.

\n
\n", "signature": "(documentation: str) -> bool:", "funcdef": "def"}, "vanna.TrainingPlanItem": {"fullname": "vanna.TrainingPlanItem", "modulename": "vanna", "qualname": "TrainingPlanItem", "kind": "class", "doc": "

\n"}, "vanna.TrainingPlanItem.__init__": {"fullname": "vanna.TrainingPlanItem.__init__", "modulename": "vanna", "qualname": "TrainingPlanItem.__init__", "kind": "function", "doc": "

\n", "signature": "(item_type: str, item_group: str, item_name: str, item_value: str)"}, "vanna.TrainingPlanItem.item_type": {"fullname": "vanna.TrainingPlanItem.item_type", "modulename": "vanna", "qualname": "TrainingPlanItem.item_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.TrainingPlanItem.item_group": {"fullname": "vanna.TrainingPlanItem.item_group", "modulename": "vanna", "qualname": "TrainingPlanItem.item_group", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.TrainingPlanItem.item_name": {"fullname": "vanna.TrainingPlanItem.item_name", "modulename": "vanna", "qualname": "TrainingPlanItem.item_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.TrainingPlanItem.item_value": {"fullname": "vanna.TrainingPlanItem.item_value", "modulename": "vanna", "qualname": "TrainingPlanItem.item_value", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"fullname": "vanna.TrainingPlanItem.ITEM_TYPE_SQL", "modulename": "vanna", "qualname": "TrainingPlanItem.ITEM_TYPE_SQL", "kind": "variable", "doc": "

\n", "default_value": "'sql'"}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"fullname": "vanna.TrainingPlanItem.ITEM_TYPE_DDL", "modulename": "vanna", "qualname": "TrainingPlanItem.ITEM_TYPE_DDL", "kind": "variable", "doc": "

\n", "default_value": "'ddl'"}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"fullname": "vanna.TrainingPlanItem.ITEM_TYPE_IS", "modulename": "vanna", "qualname": "TrainingPlanItem.ITEM_TYPE_IS", "kind": "variable", "doc": "

\n", "default_value": "'is'"}, "vanna.TrainingPlan": {"fullname": "vanna.TrainingPlan", "modulename": "vanna", "qualname": "TrainingPlan", "kind": "class", "doc": "

A class representing a training plan. You can see what's in it, and remove items from it that you don't want trained.

\n\n

Example:

\n\n
\n
plan = vn.get_training_plan()\n\nplan.get_summary()\n
\n
\n"}, "vanna.TrainingPlan.__init__": {"fullname": "vanna.TrainingPlan.__init__", "modulename": "vanna", "qualname": "TrainingPlan.__init__", "kind": "function", "doc": "

\n", "signature": "(plan: List[vanna.TrainingPlanItem])"}, "vanna.TrainingPlan.get_summary": {"fullname": "vanna.TrainingPlan.get_summary", "modulename": "vanna", "qualname": "TrainingPlan.get_summary", "kind": "function", "doc": "

Example:

\n\n
\n
plan = vn.get_training_plan()\n\nplan.get_summary()\n
\n
\n\n

Get a summary of the training plan.

\n\n
Returns:
\n\n
\n

List[str]: A list of strings describing the training plan.

\n
\n", "signature": "(self) -> List[str]:", "funcdef": "def"}, "vanna.TrainingPlan.remove_item": {"fullname": "vanna.TrainingPlan.remove_item", "modulename": "vanna", "qualname": "TrainingPlan.remove_item", "kind": "function", "doc": "

Example:

\n\n
\n
plan = vn.get_training_plan()\n\nplan.remove_item("Train on SQL: What is the average salary of employees?")\n
\n
\n\n

Remove an item from the training plan.

\n\n
Arguments:
\n\n
    \n
  • item (str): The item to remove.
  • \n
\n", "signature": "(self, item: str):", "funcdef": "def"}, "vanna.get_training_plan_postgres": {"fullname": "vanna.get_training_plan_postgres", "modulename": "vanna", "qualname": "get_training_plan_postgres", "kind": "function", "doc": "

\n", "signature": "(\tfilter_databases: Optional[List[str]] = None,\tfilter_schemas: Optional[List[str]] = None,\tinclude_information_schema: bool = False,\tuse_historical_queries: bool = True) -> vanna.TrainingPlan:", "funcdef": "def"}, "vanna.get_training_plan_generic": {"fullname": "vanna.get_training_plan_generic", "modulename": "vanna", "qualname": "get_training_plan_generic", "kind": "function", "doc": "

\n", "signature": "(df) -> vanna.TrainingPlan:", "funcdef": "def"}, "vanna.get_training_plan_experimental": {"fullname": "vanna.get_training_plan_experimental", "modulename": "vanna", "qualname": "get_training_plan_experimental", "kind": "function", "doc": "

EXPERIMENTAL : This method is experimental and may change in future versions.

\n\n

Get a training plan based on the metadata in the database. Currently this only works for Snowflake.

\n\n

Example:

\n\n
\n
plan = vn.get_training_plan_experimental(filter_databases=["employees"], filter_schemas=["public"])\n\nvn.train(plan=plan)\n
\n
\n", "signature": "(\tfilter_databases: Optional[List[str]] = None,\tfilter_schemas: Optional[List[str]] = None,\tinclude_information_schema: bool = False,\tuse_historical_queries: bool = True) -> vanna.TrainingPlan:", "funcdef": "def"}, "vanna.train": {"fullname": "vanna.train", "modulename": "vanna", "qualname": "train", "kind": "function", "doc": "

Example:

\n\n
\n
vn.train()\n
\n
\n\n

Train Vanna.AI on a question and its corresponding SQL query.\nIf you call it with no arguments, it will check if you connected to a database and it will attempt to train on the metadata of that database.\nIf you call it with the sql argument, it's equivalent to [add_sql()][vanna.add_sql].\nIf you call it with the ddl argument, it's equivalent to [add_ddl()][vanna.add_ddl].\nIf you call it with the documentation argument, it's equivalent to [add_documentation()][vanna.add_documentation].\nIt can also accept a JSON file path or SQL file path to train on a batch of questions and SQL queries or a list of SQL queries respectively.\nAdditionally, you can pass a [TrainingPlan][vanna.TrainingPlan] object. Get a training plan with [vn.get_training_plan_experimental()][vanna.get_training_plan_experimental].

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to train on.
  • \n
  • sql (str): The SQL query to train on.
  • \n
  • sql_file (str): The SQL file path.
  • \n
  • json_file (str): The JSON file path.
  • \n
  • ddl (str): The DDL statement.
  • \n
  • documentation (str): The documentation to train on.
  • \n
  • plan (TrainingPlan): The training plan to train on.
  • \n
\n", "signature": "(\tquestion: str = None,\tsql: str = None,\tddl: str = None,\tdocumentation: str = None,\tjson_file: str = None,\tsql_file: str = None,\tplan: vanna.TrainingPlan = None) -> bool:", "funcdef": "def"}, "vanna.flag_sql_for_review": {"fullname": "vanna.flag_sql_for_review", "modulename": "vanna", "qualname": "flag_sql_for_review", "kind": "function", "doc": "

Example:

\n\n
\n
vn.flag_sql_for_review(question="What is the average salary of employees?")\n
\n
\n\n

Flag a question and its corresponding SQL query for review. You can see the tag show up in [vn.get_all_questions()][vanna.get_all_questions]

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to flag.
  • \n
  • sql (str): The SQL query to flag.
  • \n
  • error_msg (str): The error message to flag.
  • \n
\n\n
Returns:
\n\n
\n

bool: True if the question and SQL query were flagged successfully, False otherwise.

\n
\n", "signature": "(\tquestion: str,\tsql: Optional[str] = None,\terror_msg: Optional[str] = None) -> bool:", "funcdef": "def"}, "vanna.remove_sql": {"fullname": "vanna.remove_sql", "modulename": "vanna", "qualname": "remove_sql", "kind": "function", "doc": "

Remove a question and its corresponding SQL query from the model's training data

\n\n

Example:

\n\n
\n
vn.remove_sql(question="What is the average salary of employees?")\n
\n
\n\n
Arguments:
\n\n
    \n
  • question (str): The question to remove.
  • \n
\n", "signature": "(question: str) -> bool:", "funcdef": "def"}, "vanna.remove_training_data": {"fullname": "vanna.remove_training_data", "modulename": "vanna", "qualname": "remove_training_data", "kind": "function", "doc": "

Remove training data from the model

\n\n

Example:

\n\n
\n
vn.remove_training_data(id="1-ddl")\n
\n
\n\n
Arguments:
\n\n
    \n
  • id (str): The ID of the training data to remove.
  • \n
\n", "signature": "(id: str) -> bool:", "funcdef": "def"}, "vanna.generate_sql": {"fullname": "vanna.generate_sql", "modulename": "vanna", "qualname": "generate_sql", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_sql(question="What is the average salary of employees?")\n# SELECT AVG(salary) FROM employees\n
\n
\n\n

Generate an SQL query using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to generate an SQL query for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The SQL query, or None if an error occurred.

\n
\n", "signature": "(question: str) -> str:", "funcdef": "def"}, "vanna.get_related_training_data": {"fullname": "vanna.get_related_training_data", "modulename": "vanna", "qualname": "get_related_training_data", "kind": "function", "doc": "

Example:

\n\n
\n
training_data = vn.get_related_training_data(question="What is the average salary of employees?")\n
\n
\n\n

Get the training data related to a question.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to get related training data for.
  • \n
\n\n
Returns:
\n\n
\n

TrainingData or None: The related training data, or None if an error occurred.

\n
\n", "signature": "(question: str) -> vanna.types.TrainingData:", "funcdef": "def"}, "vanna.generate_meta": {"fullname": "vanna.generate_meta", "modulename": "vanna", "qualname": "generate_meta", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_meta(question="What tables are in the database?")\n# Information about the tables in the database\n
\n
\n\n

Generate answers about the metadata of a database using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to generate an answer for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The answer, or None if an error occurred.

\n
\n", "signature": "(question: str) -> str:", "funcdef": "def"}, "vanna.generate_followup_questions": {"fullname": "vanna.generate_followup_questions", "modulename": "vanna", "qualname": "generate_followup_questions", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_followup_questions(question="What is the average salary of employees?", df=df)\n# ['What is the average salary of employees in the Sales department?', 'What is the average salary of employees in the Engineering department?', ...]\n
\n
\n\n

Generate follow-up questions using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to generate follow-up questions for.
  • \n
  • df (pd.DataFrame): The DataFrame to generate follow-up questions for.
  • \n
\n\n
Returns:
\n\n
\n

List[str] or None: The follow-up questions, or None if an error occurred.

\n
\n", "signature": "(question: str, df: pandas.core.frame.DataFrame) -> List[str]:", "funcdef": "def"}, "vanna.generate_questions": {"fullname": "vanna.generate_questions", "modulename": "vanna", "qualname": "generate_questions", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_questions()\n# ['What is the average salary of employees?', 'What is the total salary of employees?', ...]\n
\n
\n\n

Generate questions using the Vanna.AI API.

\n\n
Returns:
\n\n
\n

List[str] or None: The questions, or None if an error occurred.

\n
\n", "signature": "() -> List[str]:", "funcdef": "def"}, "vanna.ask": {"fullname": "vanna.ask", "modulename": "vanna", "qualname": "ask", "kind": "function", "doc": "

Example:

\n\n
\n
# RECOMMENDED IN A NOTEBOOK:\nsql, df, fig, followup_questions = vn.ask()\n\n\nsql, df, fig, followup_questions = vn.ask(question="What is the average salary of employees?")\n# SELECT AVG(salary) FROM employees\n
\n
\n\n

Ask a question using the Vanna.AI API. This generates an SQL query, runs it, and returns the results in a dataframe and a Plotly figure.\nIf you set print_results to True, the sql, dataframe, and figure will be output to the screen instead of returned.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to ask. If None, you will be prompted to enter a question.
  • \n
  • print_results (bool): Whether to print the SQL query and results.
  • \n
  • auto_train (bool): Whether to automatically train the model if the SQL query is incorrect.
  • \n
  • generate_followups (bool): Whether to generate follow-up questions.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The SQL query, or None if an error occurred.\n pd.DataFrame or None: The results of the SQL query, or None if an error occurred.\n plotly.graph_objs.Figure or None: The Plotly figure, or None if an error occurred.\n List[str] or None: The follow-up questions, or None if an error occurred.

\n
\n", "signature": "(\tquestion: Optional[str] = None,\tprint_results: bool = True,\tauto_train: bool = True,\tgenerate_followups: bool = True) -> Optional[Tuple[Optional[str], Optional[pandas.core.frame.DataFrame], Optional[plotly.graph_objs._figure.Figure], Optional[List[str]]]]:", "funcdef": "def"}, "vanna.generate_plotly_code": {"fullname": "vanna.generate_plotly_code", "modulename": "vanna", "qualname": "generate_plotly_code", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_plotly_code(\n    question="What is the average salary of employees?",\n    sql="SELECT AVG(salary) FROM employees",\n    df=df\n)\n# fig = px.bar(df, x="name", y="salary")\n
\n
\n\n

Generate Plotly code using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to generate Plotly code for.
  • \n
  • sql (str): The SQL query to generate Plotly code for.
  • \n
  • df (pd.DataFrame): The dataframe to generate Plotly code for.
  • \n
  • chart_instructions (str): Optional instructions for how to plot the chart.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The Plotly code, or None if an error occurred.

\n
\n", "signature": "(\tquestion: Optional[str],\tsql: Optional[str],\tdf: pandas.core.frame.DataFrame,\tchart_instructions: Optional[str] = None) -> str:", "funcdef": "def"}, "vanna.get_plotly_figure": {"fullname": "vanna.get_plotly_figure", "modulename": "vanna", "qualname": "get_plotly_figure", "kind": "function", "doc": "

Example:

\n\n
\n
fig = vn.get_plotly_figure(\n    plotly_code="fig = px.bar(df, x='name', y='salary')",\n    df=df\n)\nfig.show()\n
\n
\n\n

Get a Plotly figure from a dataframe and Plotly code.

\n\n
Arguments:
\n\n
    \n
  • df (pd.DataFrame): The dataframe to use.
  • \n
  • plotly_code (str): The Plotly code to use.
  • \n
\n\n
Returns:
\n\n
\n

plotly.graph_objs.Figure: The Plotly figure.

\n
\n", "signature": "(\tplotly_code: str,\tdf: pandas.core.frame.DataFrame,\tdark_mode: bool = True) -> plotly.graph_objs._figure.Figure:", "funcdef": "def"}, "vanna.get_results": {"fullname": "vanna.get_results", "modulename": "vanna", "qualname": "get_results", "kind": "function", "doc": "

DEPRECATED. Use vn.run_sql instead.\nRun the SQL query and return the results as a pandas dataframe. This is just a helper function that does not use the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • cs: Snowflake connection cursor.
  • \n
  • default_database (str): The default database to use.
  • \n
  • sql (str): The SQL query to execute.
  • \n
\n\n
Returns:
\n\n
\n

pd.DataFrame: The results of the SQL query.

\n
\n", "signature": "(cs, default_database: str, sql: str) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "vanna.generate_explanation": {"fullname": "vanna.generate_explanation", "modulename": "vanna", "qualname": "generate_explanation", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_explanation(sql="SELECT * FROM students WHERE name = 'John Doe'")\n# 'This query selects all columns from the students table where the name is John Doe.'\n
\n
\n\n

Generate an explanation of an SQL query using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • sql (str): The SQL query to generate an explanation for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The explanation, or None if an error occurred.

\n
\n", "signature": "(sql: str) -> str:", "funcdef": "def"}, "vanna.generate_question": {"fullname": "vanna.generate_question", "modulename": "vanna", "qualname": "generate_question", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_question(sql="SELECT * FROM students WHERE name = 'John Doe'")\n# 'What is the name of the student?'\n
\n
\n\n

Generate a question from an SQL query using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • sql (str): The SQL query to generate a question for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The question, or None if an error occurred.

\n
\n", "signature": "(sql: str) -> str:", "funcdef": "def"}, "vanna.get_all_questions": {"fullname": "vanna.get_all_questions", "modulename": "vanna", "qualname": "get_all_questions", "kind": "function", "doc": "

Get a list of questions from the Vanna.AI API.

\n\n

Example:

\n\n
\n
questions = vn.get_all_questions()\n
\n
\n\n
Returns:
\n\n
\n

pd.DataFrame or None: The list of questions, or None if an error occurred.

\n
\n", "signature": "() -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "vanna.get_training_data": {"fullname": "vanna.get_training_data", "modulename": "vanna", "qualname": "get_training_data", "kind": "function", "doc": "

Get the training data for the current model

\n\n

Example:

\n\n
\n
training_data = vn.get_training_data()\n
\n
\n\n
Returns:
\n\n
\n

pd.DataFrame or None: The training data, or None if an error occurred.

\n
\n", "signature": "() -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "vanna.connect_to_sqlite": {"fullname": "vanna.connect_to_sqlite", "modulename": "vanna", "qualname": "connect_to_sqlite", "kind": "function", "doc": "

Connect to a SQLite database. This is just a helper function to set [vn.run_sql][vanna.run_sql]

\n\n
Arguments:
\n\n
    \n
  • url (str): The URL of the database to connect to.
  • \n
\n\n
Returns:
\n\n
\n

None

\n
\n", "signature": "(url: str):", "funcdef": "def"}, "vanna.connect_to_snowflake": {"fullname": "vanna.connect_to_snowflake", "modulename": "vanna", "qualname": "connect_to_snowflake", "kind": "function", "doc": "

Connect to Snowflake using the Snowflake connector. This is just a helper function to set [vn.run_sql][vanna.run_sql]

\n\n

Example:

\n\n
\n
import snowflake.connector\n\nvn.connect_to_snowflake(\n    account="myaccount",\n    username="myusername",\n    password="mypassword",\n    database="mydatabase",\n    role="myrole",\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • account (str): The Snowflake account name.
  • \n
  • username (str): The Snowflake username.
  • \n
  • password (str): The Snowflake password.
  • \n
  • database (str): The default database to use.
  • \n
  • role (Union[str, None], optional): The role to use. Defaults to None.
  • \n
\n", "signature": "(\taccount: str,\tusername: str,\tpassword: str,\tdatabase: str,\trole: Optional[str] = None):", "funcdef": "def"}, "vanna.connect_to_postgres": {"fullname": "vanna.connect_to_postgres", "modulename": "vanna", "qualname": "connect_to_postgres", "kind": "function", "doc": "

Connect to postgres using the psycopg2 connector. This is just a helper function to set [vn.run_sql][vanna.run_sql]\nExample:

\n\n
\n
import psycopg2.connect\nvn.connect_to_bigquery(\n    host="myhost",\n    dbname="mydatabase",\n    user="myuser",\n    password="mypassword",\n    port=5432\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • host (str): The postgres host.
  • \n
  • dbname (str): The postgres database name.
  • \n
  • user (str): The postgres user.
  • \n
  • password (str): The postgres password.
  • \n
  • port (int): The postgres Port.
  • \n
\n", "signature": "(\thost: str = None,\tdbname: str = None,\tuser: str = None,\tpassword: str = None,\tport: int = None):", "funcdef": "def"}, "vanna.connect_to_bigquery": {"fullname": "vanna.connect_to_bigquery", "modulename": "vanna", "qualname": "connect_to_bigquery", "kind": "function", "doc": "

Connect to gcs using the bigquery connector. This is just a helper function to set [vn.run_sql][vanna.run_sql]\nExample:

\n\n
\n
import bigquery.Client\nvn.connect_to_bigquery(\n    project_id="myprojectid",\n    cred_file_path="path/to/credentials.json",\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • project_id (str): The gcs project id.
  • \n
  • cred_file_path (str): The gcs credential file path
  • \n
\n", "signature": "(cred_file_path: str = None, project_id: str = None):", "funcdef": "def"}, "vanna.base": {"fullname": "vanna.base", "modulename": "vanna.base", "kind": "module", "doc": "

\n"}, "vanna.base.base": {"fullname": "vanna.base.base", "modulename": "vanna.base.base", "kind": "module", "doc": "

\n"}, "vanna.base.base.VannaBase": {"fullname": "vanna.base.base.VannaBase", "modulename": "vanna.base.base", "qualname": "VannaBase", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "abc.ABC"}, "vanna.base.base.VannaBase.config": {"fullname": "vanna.base.base.VannaBase.config", "modulename": "vanna.base.base", "qualname": "VannaBase.config", "kind": "variable", "doc": "

\n"}, "vanna.base.base.VannaBase.run_sql_is_set": {"fullname": "vanna.base.base.VannaBase.run_sql_is_set", "modulename": "vanna.base.base", "qualname": "VannaBase.run_sql_is_set", "kind": "variable", "doc": "

\n"}, "vanna.base.base.VannaBase.generate_sql": {"fullname": "vanna.base.base.VannaBase.generate_sql", "modulename": "vanna.base.base", "qualname": "VannaBase.generate_sql", "kind": "function", "doc": "

\n", "signature": "(self, question: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.VannaBase.generate_followup_questions": {"fullname": "vanna.base.base.VannaBase.generate_followup_questions", "modulename": "vanna.base.base", "qualname": "VannaBase.generate_followup_questions", "kind": "function", "doc": "

\n", "signature": "(self, question: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.VannaBase.generate_questions": {"fullname": "vanna.base.base.VannaBase.generate_questions", "modulename": "vanna.base.base", "qualname": "VannaBase.generate_questions", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_questions()\n
\n
\n\n

Generate a list of questions that you can ask Vanna.AI.

\n", "signature": "(self, **kwargs) -> list[str]:", "funcdef": "def"}, "vanna.base.base.VannaBase.generate_embedding": {"fullname": "vanna.base.base.VannaBase.generate_embedding", "modulename": "vanna.base.base", "qualname": "VannaBase.generate_embedding", "kind": "function", "doc": "

\n", "signature": "(self, data: str, **kwargs) -> list[float]:", "funcdef": "def"}, "vanna.base.base.VannaBase.get_similar_question_sql": {"fullname": "vanna.base.base.VannaBase.get_similar_question_sql", "modulename": "vanna.base.base", "qualname": "VannaBase.get_similar_question_sql", "kind": "function", "doc": "

\n", "signature": "(self, question: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.VannaBase.get_related_ddl": {"fullname": "vanna.base.base.VannaBase.get_related_ddl", "modulename": "vanna.base.base", "qualname": "VannaBase.get_related_ddl", "kind": "function", "doc": "

\n", "signature": "(self, question: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.VannaBase.get_related_documentation": {"fullname": "vanna.base.base.VannaBase.get_related_documentation", "modulename": "vanna.base.base", "qualname": "VannaBase.get_related_documentation", "kind": "function", "doc": "

\n", "signature": "(self, question: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.VannaBase.add_question_sql": {"fullname": "vanna.base.base.VannaBase.add_question_sql", "modulename": "vanna.base.base", "qualname": "VannaBase.add_question_sql", "kind": "function", "doc": "

\n", "signature": "(self, question: str, sql: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.VannaBase.add_ddl": {"fullname": "vanna.base.base.VannaBase.add_ddl", "modulename": "vanna.base.base", "qualname": "VannaBase.add_ddl", "kind": "function", "doc": "

\n", "signature": "(self, ddl: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.VannaBase.add_documentation": {"fullname": "vanna.base.base.VannaBase.add_documentation", "modulename": "vanna.base.base", "qualname": "VannaBase.add_documentation", "kind": "function", "doc": "

\n", "signature": "(self, doc: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.VannaBase.get_training_data": {"fullname": "vanna.base.base.VannaBase.get_training_data", "modulename": "vanna.base.base", "qualname": "VannaBase.get_training_data", "kind": "function", "doc": "

\n", "signature": "(self, **kwargs) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "vanna.base.base.VannaBase.remove_training_data": {"fullname": "vanna.base.base.VannaBase.remove_training_data", "modulename": "vanna.base.base", "qualname": "VannaBase.remove_training_data", "kind": "function", "doc": "

\n", "signature": "(id: str, **kwargs) -> bool:", "funcdef": "def"}, "vanna.base.base.VannaBase.get_sql_prompt": {"fullname": "vanna.base.base.VannaBase.get_sql_prompt", "modulename": "vanna.base.base", "qualname": "VannaBase.get_sql_prompt", "kind": "function", "doc": "

\n", "signature": "(\tself,\tquestion: str,\tquestion_sql_list: list,\tddl_list: list,\tdoc_list: list,\t**kwargs):", "funcdef": "def"}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"fullname": "vanna.base.base.VannaBase.get_followup_questions_prompt", "modulename": "vanna.base.base", "qualname": "VannaBase.get_followup_questions_prompt", "kind": "function", "doc": "

\n", "signature": "(\tself,\tquestion: str,\tquestion_sql_list: list,\tddl_list: list,\tdoc_list: list,\t**kwargs):", "funcdef": "def"}, "vanna.base.base.VannaBase.submit_prompt": {"fullname": "vanna.base.base.VannaBase.submit_prompt", "modulename": "vanna.base.base", "qualname": "VannaBase.submit_prompt", "kind": "function", "doc": "

\n", "signature": "(self, prompt, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.VannaBase.generate_question": {"fullname": "vanna.base.base.VannaBase.generate_question", "modulename": "vanna.base.base", "qualname": "VannaBase.generate_question", "kind": "function", "doc": "

\n", "signature": "(self, sql: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.VannaBase.generate_plotly_code": {"fullname": "vanna.base.base.VannaBase.generate_plotly_code", "modulename": "vanna.base.base", "qualname": "VannaBase.generate_plotly_code", "kind": "function", "doc": "

\n", "signature": "(\tself,\tquestion: str = None,\tsql: str = None,\tdf_metadata: str = None,\t**kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.VannaBase.connect_to_snowflake": {"fullname": "vanna.base.base.VannaBase.connect_to_snowflake", "modulename": "vanna.base.base", "qualname": "VannaBase.connect_to_snowflake", "kind": "function", "doc": "

\n", "signature": "(\tself,\taccount: str,\tusername: str,\tpassword: str,\tdatabase: str,\trole: Optional[str] = None,\twarehouse: Optional[str] = None):", "funcdef": "def"}, "vanna.base.base.VannaBase.connect_to_sqlite": {"fullname": "vanna.base.base.VannaBase.connect_to_sqlite", "modulename": "vanna.base.base", "qualname": "VannaBase.connect_to_sqlite", "kind": "function", "doc": "

Connect to a SQLite database. This is just a helper function to set [vn.run_sql][vanna.run_sql]

\n\n
Arguments:
\n\n
    \n
  • url (str): The URL of the database to connect to.
  • \n
\n\n
Returns:
\n\n
\n

None

\n
\n", "signature": "(self, url: str):", "funcdef": "def"}, "vanna.base.base.VannaBase.connect_to_postgres": {"fullname": "vanna.base.base.VannaBase.connect_to_postgres", "modulename": "vanna.base.base", "qualname": "VannaBase.connect_to_postgres", "kind": "function", "doc": "

Connect to postgres using the psycopg2 connector. This is just a helper function to set [vn.run_sql][vanna.run_sql]\nExample:

\n\n
\n
vn.connect_to_postgres(\n    host="myhost",\n    dbname="mydatabase",\n    user="myuser",\n    password="mypassword",\n    port=5432\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • host (str): The postgres host.
  • \n
  • dbname (str): The postgres database name.
  • \n
  • user (str): The postgres user.
  • \n
  • password (str): The postgres password.
  • \n
  • port (int): The postgres Port.
  • \n
\n", "signature": "(\tself,\thost: str = None,\tdbname: str = None,\tuser: str = None,\tpassword: str = None,\tport: int = None):", "funcdef": "def"}, "vanna.base.base.VannaBase.connect_to_bigquery": {"fullname": "vanna.base.base.VannaBase.connect_to_bigquery", "modulename": "vanna.base.base", "qualname": "VannaBase.connect_to_bigquery", "kind": "function", "doc": "

Connect to gcs using the bigquery connector. This is just a helper function to set [vn.run_sql][vanna.run_sql]\nExample:

\n\n
\n
vn.connect_to_bigquery(\n    project_id="myprojectid",\n    cred_file_path="path/to/credentials.json",\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • project_id (str): The gcs project id.
  • \n
  • cred_file_path (str): The gcs credential file path
  • \n
\n", "signature": "(self, cred_file_path: str = None, project_id: str = None):", "funcdef": "def"}, "vanna.base.base.VannaBase.run_sql": {"fullname": "vanna.base.base.VannaBase.run_sql", "modulename": "vanna.base.base", "qualname": "VannaBase.run_sql", "kind": "function", "doc": "

\n", "signature": "(sql: str, **kwargs) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "vanna.base.base.VannaBase.ask": {"fullname": "vanna.base.base.VannaBase.ask", "modulename": "vanna.base.base", "qualname": "VannaBase.ask", "kind": "function", "doc": "

\n", "signature": "(\tself,\tquestion: Optional[str] = None,\tprint_results: bool = True,\tauto_train: bool = True) -> Optional[Tuple[Optional[str], Optional[pandas.core.frame.DataFrame], Optional[plotly.graph_objs._figure.Figure]]]:", "funcdef": "def"}, "vanna.base.base.VannaBase.train": {"fullname": "vanna.base.base.VannaBase.train", "modulename": "vanna.base.base", "qualname": "VannaBase.train", "kind": "function", "doc": "

Example:

\n\n
\n
vn.train()\n
\n
\n\n

Train Vanna.AI on a question and its corresponding SQL query.\nIf you call it with no arguments, it will check if you connected to a database and it will attempt to train on the metadata of that database.\nIf you call it with the sql argument, it's equivalent to [add_sql()][vanna.add_sql].\nIf you call it with the ddl argument, it's equivalent to [add_ddl()][vanna.add_ddl].\nIf you call it with the documentation argument, it's equivalent to [add_documentation()][vanna.add_documentation].\nAdditionally, you can pass a [TrainingPlan][vanna.TrainingPlan] object. Get a training plan with [vn.get_training_plan_experimental()][vanna.get_training_plan_experimental].

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to train on.
  • \n
  • sql (str): The SQL query to train on.
  • \n
  • ddl (str): The DDL statement.
  • \n
  • documentation (str): The documentation to train on.
  • \n
  • plan (TrainingPlan): The training plan to train on.
  • \n
\n", "signature": "(\tself,\tquestion: str = None,\tsql: str = None,\tddl: str = None,\tdocumentation: str = None,\tplan: vanna.types.TrainingPlan = None) -> str:", "funcdef": "def"}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"fullname": "vanna.base.base.VannaBase.get_training_plan_snowflake", "modulename": "vanna.base.base", "qualname": "VannaBase.get_training_plan_snowflake", "kind": "function", "doc": "

\n", "signature": "(\tself,\tfilter_databases: Optional[List[str]] = None,\tfilter_schemas: Optional[List[str]] = None,\tinclude_information_schema: bool = False,\tuse_historical_queries: bool = True) -> vanna.types.TrainingPlan:", "funcdef": "def"}, "vanna.base.base.VannaBase.get_plotly_figure": {"fullname": "vanna.base.base.VannaBase.get_plotly_figure", "modulename": "vanna.base.base", "qualname": "VannaBase.get_plotly_figure", "kind": "function", "doc": "

Example:

\n\n
\n
fig = vn.get_plotly_figure(\n    plotly_code="fig = px.bar(df, x='name', y='salary')",\n    df=df\n)\nfig.show()\n
\n
\n\n

Get a Plotly figure from a dataframe and Plotly code.

\n\n
Arguments:
\n\n
    \n
  • df (pd.DataFrame): The dataframe to use.
  • \n
  • plotly_code (str): The Plotly code to use.
  • \n
\n\n
Returns:
\n\n
\n

plotly.graph_objs.Figure: The Plotly figure.

\n
\n", "signature": "(\tself,\tplotly_code: str,\tdf: pandas.core.frame.DataFrame,\tdark_mode: bool = True) -> plotly.graph_objs._figure.Figure:", "funcdef": "def"}, "vanna.base.base.SplitStorage": {"fullname": "vanna.base.base.SplitStorage", "modulename": "vanna.base.base", "qualname": "SplitStorage", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "VannaBase"}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"fullname": "vanna.base.base.SplitStorage.get_similar_question_sql", "modulename": "vanna.base.base", "qualname": "SplitStorage.get_similar_question_sql", "kind": "function", "doc": "

\n", "signature": "(self, embedding: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.SplitStorage.get_related_ddl": {"fullname": "vanna.base.base.SplitStorage.get_related_ddl", "modulename": "vanna.base.base", "qualname": "SplitStorage.get_related_ddl", "kind": "function", "doc": "

\n", "signature": "(self, embedding: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.SplitStorage.get_related_documentation": {"fullname": "vanna.base.base.SplitStorage.get_related_documentation", "modulename": "vanna.base.base", "qualname": "SplitStorage.get_related_documentation", "kind": "function", "doc": "

\n", "signature": "(self, embedding: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"fullname": "vanna.base.base.SplitStorage.store_question_sql_embedding", "modulename": "vanna.base.base", "qualname": "SplitStorage.store_question_sql_embedding", "kind": "function", "doc": "

\n", "signature": "(self, embedding: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"fullname": "vanna.base.base.SplitStorage.store_ddl_embedding", "modulename": "vanna.base.base", "qualname": "SplitStorage.store_ddl_embedding", "kind": "function", "doc": "

\n", "signature": "(self, embedding: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"fullname": "vanna.base.base.SplitStorage.store_documentation_embedding", "modulename": "vanna.base.base", "qualname": "SplitStorage.store_documentation_embedding", "kind": "function", "doc": "

\n", "signature": "(self, embedding: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"fullname": "vanna.base.base.SplitStorage.get_similar_question_sql_ids", "modulename": "vanna.base.base", "qualname": "SplitStorage.get_similar_question_sql_ids", "kind": "function", "doc": "

\n", "signature": "(self, embedding: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"fullname": "vanna.base.base.SplitStorage.get_related_ddl_ids", "modulename": "vanna.base.base", "qualname": "SplitStorage.get_related_ddl_ids", "kind": "function", "doc": "

\n", "signature": "(self, embedding: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"fullname": "vanna.base.base.SplitStorage.get_related_documentation_ids", "modulename": "vanna.base.base", "qualname": "SplitStorage.get_related_documentation_ids", "kind": "function", "doc": "

\n", "signature": "(self, embedding: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.SplitStorage.get_question_sql": {"fullname": "vanna.base.base.SplitStorage.get_question_sql", "modulename": "vanna.base.base", "qualname": "SplitStorage.get_question_sql", "kind": "function", "doc": "

\n", "signature": "(self, question_sql_ids: list, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.SplitStorage.get_documentation": {"fullname": "vanna.base.base.SplitStorage.get_documentation", "modulename": "vanna.base.base", "qualname": "SplitStorage.get_documentation", "kind": "function", "doc": "

\n", "signature": "(self, doc_ids: list, **kwargs) -> list:", "funcdef": "def"}, "vanna.base.base.SplitStorage.get_ddl": {"fullname": "vanna.base.base.SplitStorage.get_ddl", "modulename": "vanna.base.base", "qualname": "SplitStorage.get_ddl", "kind": "function", "doc": "

\n", "signature": "(self, ddl_ids: list, **kwargs) -> list:", "funcdef": "def"}, "vanna.chromadb": {"fullname": "vanna.chromadb", "modulename": "vanna.chromadb", "kind": "module", "doc": "

\n"}, "vanna.chromadb.chromadb_vector": {"fullname": "vanna.chromadb.chromadb_vector", "modulename": "vanna.chromadb.chromadb_vector", "kind": "module", "doc": "

\n"}, "vanna.chromadb.chromadb_vector.default_ef": {"fullname": "vanna.chromadb.chromadb_vector.default_ef", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "default_ef", "kind": "variable", "doc": "

\n", "default_value": "<chromadb.utils.embedding_functions.ONNXMiniLM_L6_V2 object>"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "vanna.base.base.VannaBase"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.chroma_client", "kind": "variable", "doc": "

\n"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.documentation_collection", "kind": "variable", "doc": "

\n"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.ddl_collection", "kind": "variable", "doc": "

\n"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.sql_collection", "kind": "variable", "doc": "

\n"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.generate_embedding", "kind": "function", "doc": "

\n", "signature": "(self, data: str, **kwargs) -> list[float]:", "funcdef": "def"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.add_question_sql", "kind": "function", "doc": "

\n", "signature": "(self, question: str, sql: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.add_ddl", "kind": "function", "doc": "

\n", "signature": "(self, ddl: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.add_documentation", "kind": "function", "doc": "

\n", "signature": "(self, doc: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.get_training_data", "kind": "function", "doc": "

\n", "signature": "(self, **kwargs) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.remove_training_data", "kind": "function", "doc": "

\n", "signature": "(self, id: str, **kwargs) -> bool:", "funcdef": "def"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.get_similar_question_sql", "kind": "function", "doc": "

\n", "signature": "(self, question: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.get_related_ddl", "kind": "function", "doc": "

\n", "signature": "(self, question: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"fullname": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation", "modulename": "vanna.chromadb.chromadb_vector", "qualname": "ChromaDB_VectorStore.get_related_documentation", "kind": "function", "doc": "

\n", "signature": "(self, question: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.exceptions": {"fullname": "vanna.exceptions", "modulename": "vanna.exceptions", "kind": "module", "doc": "

\n"}, "vanna.exceptions.ImproperlyConfigured": {"fullname": "vanna.exceptions.ImproperlyConfigured", "modulename": "vanna.exceptions", "qualname": "ImproperlyConfigured", "kind": "class", "doc": "

Raise for incorrect configuration.

\n", "bases": "builtins.BaseException"}, "vanna.exceptions.DependencyError": {"fullname": "vanna.exceptions.DependencyError", "modulename": "vanna.exceptions", "qualname": "DependencyError", "kind": "class", "doc": "

Raise for missing dependencies.

\n", "bases": "builtins.BaseException"}, "vanna.exceptions.ConnectionError": {"fullname": "vanna.exceptions.ConnectionError", "modulename": "vanna.exceptions", "qualname": "ConnectionError", "kind": "class", "doc": "

Raise for connection

\n", "bases": "builtins.BaseException"}, "vanna.exceptions.OTPCodeError": {"fullname": "vanna.exceptions.OTPCodeError", "modulename": "vanna.exceptions", "qualname": "OTPCodeError", "kind": "class", "doc": "

Raise for invalid otp or not able to send it

\n", "bases": "builtins.BaseException"}, "vanna.exceptions.SQLRemoveError": {"fullname": "vanna.exceptions.SQLRemoveError", "modulename": "vanna.exceptions", "qualname": "SQLRemoveError", "kind": "class", "doc": "

Raise when not able to remove SQL

\n", "bases": "builtins.BaseException"}, "vanna.exceptions.ExecutionError": {"fullname": "vanna.exceptions.ExecutionError", "modulename": "vanna.exceptions", "qualname": "ExecutionError", "kind": "class", "doc": "

Raise when not able to execute Code

\n", "bases": "builtins.BaseException"}, "vanna.exceptions.ValidationError": {"fullname": "vanna.exceptions.ValidationError", "modulename": "vanna.exceptions", "qualname": "ValidationError", "kind": "class", "doc": "

Raise for validations

\n", "bases": "builtins.BaseException"}, "vanna.exceptions.APIError": {"fullname": "vanna.exceptions.APIError", "modulename": "vanna.exceptions", "qualname": "APIError", "kind": "class", "doc": "

Raise for API errors

\n", "bases": "builtins.BaseException"}, "vanna.local": {"fullname": "vanna.local", "modulename": "vanna.local", "kind": "module", "doc": "

\n"}, "vanna.local.LocalContext_OpenAI": {"fullname": "vanna.local.LocalContext_OpenAI", "modulename": "vanna.local", "qualname": "LocalContext_OpenAI", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore, vanna.openai.openai_chat.OpenAI_Chat"}, "vanna.local.LocalContext_OpenAI.__init__": {"fullname": "vanna.local.LocalContext_OpenAI.__init__", "modulename": "vanna.local", "qualname": "LocalContext_OpenAI.__init__", "kind": "function", "doc": "

\n", "signature": "(config=None)"}, "vanna.openai": {"fullname": "vanna.openai", "modulename": "vanna.openai", "kind": "module", "doc": "

\n"}, "vanna.openai.openai_chat": {"fullname": "vanna.openai.openai_chat", "modulename": "vanna.openai.openai_chat", "kind": "module", "doc": "

\n"}, "vanna.openai.openai_chat.OpenAI_Chat": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "vanna.base.base.VannaBase"}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.system_message", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.system_message", "kind": "function", "doc": "

\n", "signature": "(message: str) -> dict:", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.user_message", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.user_message", "kind": "function", "doc": "

\n", "signature": "(message: str) -> dict:", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.assistant_message", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.assistant_message", "kind": "function", "doc": "

\n", "signature": "(message: str) -> dict:", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.str_to_approx_token_count", "kind": "function", "doc": "

\n", "signature": "(string: str) -> int:", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.add_ddl_to_prompt", "kind": "function", "doc": "

\n", "signature": "(initial_prompt: str, ddl_list: list[str], max_tokens: int = 14000) -> str:", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.add_documentation_to_prompt", "kind": "function", "doc": "

\n", "signature": "(\tinitial_prompt: str,\tdocumentation_list: list[str],\tmax_tokens: int = 14000) -> str:", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.add_sql_to_prompt", "kind": "function", "doc": "

\n", "signature": "(initial_prompt: str, sql_list: list[str], max_tokens: int = 14000) -> str:", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.get_sql_prompt", "kind": "function", "doc": "

\n", "signature": "(\tself,\tquestion: str,\tquestion_sql_list: list,\tddl_list: list,\tdoc_list: list,\t**kwargs):", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.get_followup_questions_prompt", "kind": "function", "doc": "

\n", "signature": "(\tself,\tquestion: str,\tdf: pandas.core.frame.DataFrame,\tquestion_sql_list: list,\tddl_list: list,\tdoc_list: list,\t**kwargs):", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.generate_question", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.generate_question", "kind": "function", "doc": "

\n", "signature": "(self, sql: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.generate_plotly_code", "kind": "function", "doc": "

\n", "signature": "(\tself,\tquestion: str = None,\tsql: str = None,\tdf_metadata: str = None,\t**kwargs) -> str:", "funcdef": "def"}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"fullname": "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt", "modulename": "vanna.openai.openai_chat", "qualname": "OpenAI_Chat.submit_prompt", "kind": "function", "doc": "

\n", "signature": "(self, prompt, **kwargs) -> str:", "funcdef": "def"}, "vanna.openai.openai_embeddings": {"fullname": "vanna.openai.openai_embeddings", "modulename": "vanna.openai.openai_embeddings", "kind": "module", "doc": "

\n"}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"fullname": "vanna.openai.openai_embeddings.OpenAI_Embeddings", "modulename": "vanna.openai.openai_embeddings", "qualname": "OpenAI_Embeddings", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "vanna.base.base.VannaBase"}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"fullname": "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding", "modulename": "vanna.openai.openai_embeddings", "qualname": "OpenAI_Embeddings.generate_embedding", "kind": "function", "doc": "

\n", "signature": "(self, data: str, **kwargs) -> list[float]:", "funcdef": "def"}, "vanna.remote": {"fullname": "vanna.remote", "modulename": "vanna.remote", "kind": "module", "doc": "

\n"}, "vanna.remote.VannaDefault": {"fullname": "vanna.remote.VannaDefault", "modulename": "vanna.remote", "qualname": "VannaDefault", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "vanna.base.base.VannaBase"}, "vanna.remote.VannaDefault.__init__": {"fullname": "vanna.remote.VannaDefault.__init__", "modulename": "vanna.remote", "qualname": "VannaDefault.__init__", "kind": "function", "doc": "

\n", "signature": "(model: str, api_key: str, config=None)"}, "vanna.remote.VannaDefault.get_training_data": {"fullname": "vanna.remote.VannaDefault.get_training_data", "modulename": "vanna.remote", "qualname": "VannaDefault.get_training_data", "kind": "function", "doc": "

Get the training data for the current model

\n\n

Example:

\n\n
\n
training_data = vn.get_training_data()\n
\n
\n\n
Returns:
\n\n
\n

pd.DataFrame or None: The training data, or None if an error occurred.

\n
\n", "signature": "(self, **kwargs) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "vanna.remote.VannaDefault.remove_training_data": {"fullname": "vanna.remote.VannaDefault.remove_training_data", "modulename": "vanna.remote", "qualname": "VannaDefault.remove_training_data", "kind": "function", "doc": "

Remove training data from the model

\n\n

Example:

\n\n
\n
vn.remove_training_data(id="1-ddl")\n
\n
\n\n
Arguments:
\n\n
    \n
  • id (str): The ID of the training data to remove.
  • \n
\n", "signature": "(self, id: str, **kwargs) -> bool:", "funcdef": "def"}, "vanna.remote.VannaDefault.generate_questions": {"fullname": "vanna.remote.VannaDefault.generate_questions", "modulename": "vanna.remote", "qualname": "VannaDefault.generate_questions", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_questions()\n# ['What is the average salary of employees?', 'What is the total salary of employees?', ...]\n
\n
\n\n

Generate questions using the Vanna.AI API.

\n\n
Returns:
\n\n
\n

List[str] or None: The questions, or None if an error occurred.

\n
\n", "signature": "(self) -> list[str]:", "funcdef": "def"}, "vanna.remote.VannaDefault.add_ddl": {"fullname": "vanna.remote.VannaDefault.add_ddl", "modulename": "vanna.remote", "qualname": "VannaDefault.add_ddl", "kind": "function", "doc": "

Adds a DDL statement to the model's training data

\n\n

Example:

\n\n
\n
vn.add_ddl(\n    ddl="CREATE TABLE employees (id INT, name VARCHAR(255), salary INT)"\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • ddl (str): The DDL statement to store.
  • \n
\n\n
Returns:
\n\n
\n

str: The ID of the DDL statement.

\n
\n", "signature": "(self, ddl: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.remote.VannaDefault.add_documentation": {"fullname": "vanna.remote.VannaDefault.add_documentation", "modulename": "vanna.remote", "qualname": "VannaDefault.add_documentation", "kind": "function", "doc": "

Adds documentation to the model's training data

\n\n

Example:

\n\n
\n
vn.add_documentation(\n    documentation="Our organization's definition of sales is the discount price of an item multiplied by the quantity sold."\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • documentation (str): The documentation string to store.
  • \n
\n\n
Returns:
\n\n
\n

str: The ID of the documentation string.

\n
\n", "signature": "(self, documentation: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.remote.VannaDefault.add_question_sql": {"fullname": "vanna.remote.VannaDefault.add_question_sql", "modulename": "vanna.remote", "qualname": "VannaDefault.add_question_sql", "kind": "function", "doc": "

Adds a question and its corresponding SQL query to the model's training data. The preferred way to call this is to use [vn.train(sql=...)][vanna.train].

\n\n

Example:

\n\n
\n
vn.add_sql(\n    question="What is the average salary of employees?",\n    sql="SELECT AVG(salary) FROM employees"\n)\n
\n
\n\n
Arguments:
\n\n
    \n
  • question (str): The question to store.
  • \n
  • sql (str): The SQL query to store.
  • \n
  • tag (Union[str, None]): A tag to associate with the question and SQL query.
  • \n
\n\n
Returns:
\n\n
\n

str: The ID of the question and SQL query.

\n
\n", "signature": "(self, question: str, sql: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.remote.VannaDefault.generate_embedding": {"fullname": "vanna.remote.VannaDefault.generate_embedding", "modulename": "vanna.remote", "qualname": "VannaDefault.generate_embedding", "kind": "function", "doc": "

Not necessary for remote models as embeddings are generated on the server side.

\n", "signature": "(self, data: str, **kwargs) -> list[float]:", "funcdef": "def"}, "vanna.remote.VannaDefault.generate_plotly_code": {"fullname": "vanna.remote.VannaDefault.generate_plotly_code", "modulename": "vanna.remote", "qualname": "VannaDefault.generate_plotly_code", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_plotly_code(\n    question="What is the average salary of employees?",\n    sql="SELECT AVG(salary) FROM employees",\n    df_metadata=df.dtypes\n)\n# fig = px.bar(df, x="name", y="salary")\n
\n
\n\n

Generate Plotly code using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to generate Plotly code for.
  • \n
  • sql (str): The SQL query to generate Plotly code for.
  • \n
  • df (pd.DataFrame): The dataframe to generate Plotly code for.
  • \n
  • chart_instructions (str): Optional instructions for how to plot the chart.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The Plotly code, or None if an error occurred.

\n
\n", "signature": "(\tself,\tquestion: str = None,\tsql: str = None,\tdf_metadata: str = None,\t**kwargs) -> str:", "funcdef": "def"}, "vanna.remote.VannaDefault.generate_question": {"fullname": "vanna.remote.VannaDefault.generate_question", "modulename": "vanna.remote", "qualname": "VannaDefault.generate_question", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_question(sql="SELECT * FROM students WHERE name = 'John Doe'")\n# 'What is the name of the student?'\n
\n
\n\n

Generate a question from an SQL query using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • sql (str): The SQL query to generate a question for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The question, or None if an error occurred.

\n
\n", "signature": "(self, sql: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.remote.VannaDefault.get_sql_prompt": {"fullname": "vanna.remote.VannaDefault.get_sql_prompt", "modulename": "vanna.remote", "qualname": "VannaDefault.get_sql_prompt", "kind": "function", "doc": "

Not necessary for remote models as prompts are generated on the server side.

\n", "signature": "(\tself,\tquestion: str,\tquestion_sql_list: list,\tddl_list: list,\tdoc_list: list,\t**kwargs):", "funcdef": "def"}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"fullname": "vanna.remote.VannaDefault.get_followup_questions_prompt", "modulename": "vanna.remote", "qualname": "VannaDefault.get_followup_questions_prompt", "kind": "function", "doc": "

Not necessary for remote models as prompts are generated on the server side.

\n", "signature": "(\tself,\tquestion: str,\tdf: pandas.core.frame.DataFrame,\tquestion_sql_list: list,\tddl_list: list,\tdoc_list: list,\t**kwargs):", "funcdef": "def"}, "vanna.remote.VannaDefault.submit_prompt": {"fullname": "vanna.remote.VannaDefault.submit_prompt", "modulename": "vanna.remote", "qualname": "VannaDefault.submit_prompt", "kind": "function", "doc": "

Not necessary for remote models as prompts are handled on the server side.

\n", "signature": "(self, prompt, **kwargs) -> str:", "funcdef": "def"}, "vanna.remote.VannaDefault.get_similar_question_sql": {"fullname": "vanna.remote.VannaDefault.get_similar_question_sql", "modulename": "vanna.remote", "qualname": "VannaDefault.get_similar_question_sql", "kind": "function", "doc": "

Not necessary for remote models as similar questions are generated on the server side.

\n", "signature": "(self, question: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.remote.VannaDefault.get_related_ddl": {"fullname": "vanna.remote.VannaDefault.get_related_ddl", "modulename": "vanna.remote", "qualname": "VannaDefault.get_related_ddl", "kind": "function", "doc": "

Not necessary for remote models as related DDL statements are generated on the server side.

\n", "signature": "(self, question: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.remote.VannaDefault.get_related_documentation": {"fullname": "vanna.remote.VannaDefault.get_related_documentation", "modulename": "vanna.remote", "qualname": "VannaDefault.get_related_documentation", "kind": "function", "doc": "

Not necessary for remote models as related documentation is generated on the server side.

\n", "signature": "(self, question: str, **kwargs) -> list:", "funcdef": "def"}, "vanna.remote.VannaDefault.generate_sql": {"fullname": "vanna.remote.VannaDefault.generate_sql", "modulename": "vanna.remote", "qualname": "VannaDefault.generate_sql", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_sql_from_question(question="What is the average salary of employees?")\n# SELECT AVG(salary) FROM employees\n
\n
\n\n

Generate an SQL query using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to generate an SQL query for.
  • \n
\n\n
Returns:
\n\n
\n

str or None: The SQL query, or None if an error occurred.

\n
\n", "signature": "(self, question: str, **kwargs) -> str:", "funcdef": "def"}, "vanna.remote.VannaDefault.generate_followup_questions": {"fullname": "vanna.remote.VannaDefault.generate_followup_questions", "modulename": "vanna.remote", "qualname": "VannaDefault.generate_followup_questions", "kind": "function", "doc": "

Example:

\n\n
\n
vn.generate_followup_questions(question="What is the average salary of employees?", df=df)\n# ['What is the average salary of employees in the Sales department?', 'What is the average salary of employees in the Engineering department?', ...]\n
\n
\n\n

Generate follow-up questions using the Vanna.AI API.

\n\n
Arguments:
\n\n
    \n
  • question (str): The question to generate follow-up questions for.
  • \n
  • df (pd.DataFrame): The DataFrame to generate follow-up questions for.
  • \n
\n\n
Returns:
\n\n
\n

List[str] or None: The follow-up questions, or None if an error occurred.

\n
\n", "signature": "(\tself,\tquestion: str,\tdf: pandas.core.frame.DataFrame,\t**kwargs) -> list[str]:", "funcdef": "def"}, "vanna.types": {"fullname": "vanna.types", "modulename": "vanna.types", "kind": "module", "doc": "

\n"}, "vanna.types.Status": {"fullname": "vanna.types.Status", "modulename": "vanna.types", "qualname": "Status", "kind": "class", "doc": "

\n"}, "vanna.types.Status.__init__": {"fullname": "vanna.types.Status.__init__", "modulename": "vanna.types", "qualname": "Status.__init__", "kind": "function", "doc": "

\n", "signature": "(success: bool, message: str)"}, "vanna.types.Status.success": {"fullname": "vanna.types.Status.success", "modulename": "vanna.types", "qualname": "Status.success", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "vanna.types.Status.message": {"fullname": "vanna.types.Status.message", "modulename": "vanna.types", "qualname": "Status.message", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.StatusWithId": {"fullname": "vanna.types.StatusWithId", "modulename": "vanna.types", "qualname": "StatusWithId", "kind": "class", "doc": "

\n"}, "vanna.types.StatusWithId.__init__": {"fullname": "vanna.types.StatusWithId.__init__", "modulename": "vanna.types", "qualname": "StatusWithId.__init__", "kind": "function", "doc": "

\n", "signature": "(success: bool, message: str, id: str)"}, "vanna.types.StatusWithId.success": {"fullname": "vanna.types.StatusWithId.success", "modulename": "vanna.types", "qualname": "StatusWithId.success", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "vanna.types.StatusWithId.message": {"fullname": "vanna.types.StatusWithId.message", "modulename": "vanna.types", "qualname": "StatusWithId.message", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.StatusWithId.id": {"fullname": "vanna.types.StatusWithId.id", "modulename": "vanna.types", "qualname": "StatusWithId.id", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionList": {"fullname": "vanna.types.QuestionList", "modulename": "vanna.types", "qualname": "QuestionList", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionList.__init__": {"fullname": "vanna.types.QuestionList.__init__", "modulename": "vanna.types", "qualname": "QuestionList.__init__", "kind": "function", "doc": "

\n", "signature": "(questions: List[vanna.types.FullQuestionDocument])"}, "vanna.types.QuestionList.questions": {"fullname": "vanna.types.QuestionList.questions", "modulename": "vanna.types", "qualname": "QuestionList.questions", "kind": "variable", "doc": "

\n", "annotation": ": List[vanna.types.FullQuestionDocument]"}, "vanna.types.FullQuestionDocument": {"fullname": "vanna.types.FullQuestionDocument", "modulename": "vanna.types", "qualname": "FullQuestionDocument", "kind": "class", "doc": "

\n"}, "vanna.types.FullQuestionDocument.__init__": {"fullname": "vanna.types.FullQuestionDocument.__init__", "modulename": "vanna.types", "qualname": "FullQuestionDocument.__init__", "kind": "function", "doc": "

\n", "signature": "(\tid: vanna.types.QuestionId,\tquestion: vanna.types.Question,\tanswer: vanna.types.SQLAnswer | None,\tdata: vanna.types.DataResult | None,\tplotly: vanna.types.PlotlyResult | None)"}, "vanna.types.FullQuestionDocument.id": {"fullname": "vanna.types.FullQuestionDocument.id", "modulename": "vanna.types", "qualname": "FullQuestionDocument.id", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.QuestionId"}, "vanna.types.FullQuestionDocument.question": {"fullname": "vanna.types.FullQuestionDocument.question", "modulename": "vanna.types", "qualname": "FullQuestionDocument.question", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.Question"}, "vanna.types.FullQuestionDocument.answer": {"fullname": "vanna.types.FullQuestionDocument.answer", "modulename": "vanna.types", "qualname": "FullQuestionDocument.answer", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.SQLAnswer | None"}, "vanna.types.FullQuestionDocument.data": {"fullname": "vanna.types.FullQuestionDocument.data", "modulename": "vanna.types", "qualname": "FullQuestionDocument.data", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.DataResult | None"}, "vanna.types.FullQuestionDocument.plotly": {"fullname": "vanna.types.FullQuestionDocument.plotly", "modulename": "vanna.types", "qualname": "FullQuestionDocument.plotly", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.PlotlyResult | None"}, "vanna.types.QuestionSQLPair": {"fullname": "vanna.types.QuestionSQLPair", "modulename": "vanna.types", "qualname": "QuestionSQLPair", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionSQLPair.__init__": {"fullname": "vanna.types.QuestionSQLPair.__init__", "modulename": "vanna.types", "qualname": "QuestionSQLPair.__init__", "kind": "function", "doc": "

\n", "signature": "(question: str, sql: str, tag: Optional[str])"}, "vanna.types.QuestionSQLPair.question": {"fullname": "vanna.types.QuestionSQLPair.question", "modulename": "vanna.types", "qualname": "QuestionSQLPair.question", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionSQLPair.sql": {"fullname": "vanna.types.QuestionSQLPair.sql", "modulename": "vanna.types", "qualname": "QuestionSQLPair.sql", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionSQLPair.tag": {"fullname": "vanna.types.QuestionSQLPair.tag", "modulename": "vanna.types", "qualname": "QuestionSQLPair.tag", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "vanna.types.Organization": {"fullname": "vanna.types.Organization", "modulename": "vanna.types", "qualname": "Organization", "kind": "class", "doc": "

\n"}, "vanna.types.Organization.__init__": {"fullname": "vanna.types.Organization.__init__", "modulename": "vanna.types", "qualname": "Organization.__init__", "kind": "function", "doc": "

\n", "signature": "(\tname: str,\tuser: str | None,\tconnection: vanna.types.Connection | None)"}, "vanna.types.Organization.name": {"fullname": "vanna.types.Organization.name", "modulename": "vanna.types", "qualname": "Organization.name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Organization.user": {"fullname": "vanna.types.Organization.user", "modulename": "vanna.types", "qualname": "Organization.user", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.Organization.connection": {"fullname": "vanna.types.Organization.connection", "modulename": "vanna.types", "qualname": "Organization.connection", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.Connection | None"}, "vanna.types.OrganizationList": {"fullname": "vanna.types.OrganizationList", "modulename": "vanna.types", "qualname": "OrganizationList", "kind": "class", "doc": "

\n"}, "vanna.types.OrganizationList.__init__": {"fullname": "vanna.types.OrganizationList.__init__", "modulename": "vanna.types", "qualname": "OrganizationList.__init__", "kind": "function", "doc": "

\n", "signature": "(organizations: List[str])"}, "vanna.types.OrganizationList.organizations": {"fullname": "vanna.types.OrganizationList.organizations", "modulename": "vanna.types", "qualname": "OrganizationList.organizations", "kind": "variable", "doc": "

\n", "annotation": ": List[str]"}, "vanna.types.QuestionStringList": {"fullname": "vanna.types.QuestionStringList", "modulename": "vanna.types", "qualname": "QuestionStringList", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionStringList.__init__": {"fullname": "vanna.types.QuestionStringList.__init__", "modulename": "vanna.types", "qualname": "QuestionStringList.__init__", "kind": "function", "doc": "

\n", "signature": "(questions: List[str])"}, "vanna.types.QuestionStringList.questions": {"fullname": "vanna.types.QuestionStringList.questions", "modulename": "vanna.types", "qualname": "QuestionStringList.questions", "kind": "variable", "doc": "

\n", "annotation": ": List[str]"}, "vanna.types.Visibility": {"fullname": "vanna.types.Visibility", "modulename": "vanna.types", "qualname": "Visibility", "kind": "class", "doc": "

\n"}, "vanna.types.Visibility.__init__": {"fullname": "vanna.types.Visibility.__init__", "modulename": "vanna.types", "qualname": "Visibility.__init__", "kind": "function", "doc": "

\n", "signature": "(visibility: bool)"}, "vanna.types.Visibility.visibility": {"fullname": "vanna.types.Visibility.visibility", "modulename": "vanna.types", "qualname": "Visibility.visibility", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "vanna.types.UserEmail": {"fullname": "vanna.types.UserEmail", "modulename": "vanna.types", "qualname": "UserEmail", "kind": "class", "doc": "

\n"}, "vanna.types.UserEmail.__init__": {"fullname": "vanna.types.UserEmail.__init__", "modulename": "vanna.types", "qualname": "UserEmail.__init__", "kind": "function", "doc": "

\n", "signature": "(email: str)"}, "vanna.types.UserEmail.email": {"fullname": "vanna.types.UserEmail.email", "modulename": "vanna.types", "qualname": "UserEmail.email", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.NewOrganization": {"fullname": "vanna.types.NewOrganization", "modulename": "vanna.types", "qualname": "NewOrganization", "kind": "class", "doc": "

\n"}, "vanna.types.NewOrganization.__init__": {"fullname": "vanna.types.NewOrganization.__init__", "modulename": "vanna.types", "qualname": "NewOrganization.__init__", "kind": "function", "doc": "

\n", "signature": "(org_name: str, db_type: str)"}, "vanna.types.NewOrganization.org_name": {"fullname": "vanna.types.NewOrganization.org_name", "modulename": "vanna.types", "qualname": "NewOrganization.org_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.NewOrganization.db_type": {"fullname": "vanna.types.NewOrganization.db_type", "modulename": "vanna.types", "qualname": "NewOrganization.db_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.NewOrganizationMember": {"fullname": "vanna.types.NewOrganizationMember", "modulename": "vanna.types", "qualname": "NewOrganizationMember", "kind": "class", "doc": "

\n"}, "vanna.types.NewOrganizationMember.__init__": {"fullname": "vanna.types.NewOrganizationMember.__init__", "modulename": "vanna.types", "qualname": "NewOrganizationMember.__init__", "kind": "function", "doc": "

\n", "signature": "(org_name: str, email: str, is_admin: bool)"}, "vanna.types.NewOrganizationMember.org_name": {"fullname": "vanna.types.NewOrganizationMember.org_name", "modulename": "vanna.types", "qualname": "NewOrganizationMember.org_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.NewOrganizationMember.email": {"fullname": "vanna.types.NewOrganizationMember.email", "modulename": "vanna.types", "qualname": "NewOrganizationMember.email", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.NewOrganizationMember.is_admin": {"fullname": "vanna.types.NewOrganizationMember.is_admin", "modulename": "vanna.types", "qualname": "NewOrganizationMember.is_admin", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "vanna.types.UserOTP": {"fullname": "vanna.types.UserOTP", "modulename": "vanna.types", "qualname": "UserOTP", "kind": "class", "doc": "

\n"}, "vanna.types.UserOTP.__init__": {"fullname": "vanna.types.UserOTP.__init__", "modulename": "vanna.types", "qualname": "UserOTP.__init__", "kind": "function", "doc": "

\n", "signature": "(email: str, otp: str)"}, "vanna.types.UserOTP.email": {"fullname": "vanna.types.UserOTP.email", "modulename": "vanna.types", "qualname": "UserOTP.email", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.UserOTP.otp": {"fullname": "vanna.types.UserOTP.otp", "modulename": "vanna.types", "qualname": "UserOTP.otp", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.ApiKey": {"fullname": "vanna.types.ApiKey", "modulename": "vanna.types", "qualname": "ApiKey", "kind": "class", "doc": "

\n"}, "vanna.types.ApiKey.__init__": {"fullname": "vanna.types.ApiKey.__init__", "modulename": "vanna.types", "qualname": "ApiKey.__init__", "kind": "function", "doc": "

\n", "signature": "(key: str)"}, "vanna.types.ApiKey.key": {"fullname": "vanna.types.ApiKey.key", "modulename": "vanna.types", "qualname": "ApiKey.key", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionId": {"fullname": "vanna.types.QuestionId", "modulename": "vanna.types", "qualname": "QuestionId", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionId.__init__": {"fullname": "vanna.types.QuestionId.__init__", "modulename": "vanna.types", "qualname": "QuestionId.__init__", "kind": "function", "doc": "

\n", "signature": "(id: str)"}, "vanna.types.QuestionId.id": {"fullname": "vanna.types.QuestionId.id", "modulename": "vanna.types", "qualname": "QuestionId.id", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Question": {"fullname": "vanna.types.Question", "modulename": "vanna.types", "qualname": "Question", "kind": "class", "doc": "

\n"}, "vanna.types.Question.__init__": {"fullname": "vanna.types.Question.__init__", "modulename": "vanna.types", "qualname": "Question.__init__", "kind": "function", "doc": "

\n", "signature": "(question: str)"}, "vanna.types.Question.question": {"fullname": "vanna.types.Question.question", "modulename": "vanna.types", "qualname": "Question.question", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionCategory": {"fullname": "vanna.types.QuestionCategory", "modulename": "vanna.types", "qualname": "QuestionCategory", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionCategory.__init__": {"fullname": "vanna.types.QuestionCategory.__init__", "modulename": "vanna.types", "qualname": "QuestionCategory.__init__", "kind": "function", "doc": "

\n", "signature": "(question: str, category: str)"}, "vanna.types.QuestionCategory.question": {"fullname": "vanna.types.QuestionCategory.question", "modulename": "vanna.types", "qualname": "QuestionCategory.question", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionCategory.category": {"fullname": "vanna.types.QuestionCategory.category", "modulename": "vanna.types", "qualname": "QuestionCategory.category", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"fullname": "vanna.types.QuestionCategory.NO_SQL_GENERATED", "modulename": "vanna.types", "qualname": "QuestionCategory.NO_SQL_GENERATED", "kind": "variable", "doc": "

\n", "default_value": "'No SQL Generated'"}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"fullname": "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN", "modulename": "vanna.types", "qualname": "QuestionCategory.SQL_UNABLE_TO_RUN", "kind": "variable", "doc": "

\n", "default_value": "'SQL Unable to Run'"}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"fullname": "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY", "modulename": "vanna.types", "qualname": "QuestionCategory.BOOTSTRAP_TRAINING_QUERY", "kind": "variable", "doc": "

\n", "default_value": "'Bootstrap Training Query'"}, "vanna.types.QuestionCategory.SQL_RAN": {"fullname": "vanna.types.QuestionCategory.SQL_RAN", "modulename": "vanna.types", "qualname": "QuestionCategory.SQL_RAN", "kind": "variable", "doc": "

\n", "default_value": "'SQL Ran Successfully'"}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"fullname": "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW", "modulename": "vanna.types", "qualname": "QuestionCategory.FLAGGED_FOR_REVIEW", "kind": "variable", "doc": "

\n", "default_value": "'Flagged for Review'"}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"fullname": "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED", "modulename": "vanna.types", "qualname": "QuestionCategory.REVIEWED_AND_APPROVED", "kind": "variable", "doc": "

\n", "default_value": "'Reviewed and Approved'"}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"fullname": "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED", "modulename": "vanna.types", "qualname": "QuestionCategory.REVIEWED_AND_REJECTED", "kind": "variable", "doc": "

\n", "default_value": "'Reviewed and Rejected'"}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"fullname": "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED", "modulename": "vanna.types", "qualname": "QuestionCategory.REVIEWED_AND_UPDATED", "kind": "variable", "doc": "

\n", "default_value": "'Reviewed and Updated'"}, "vanna.types.AccuracyStats": {"fullname": "vanna.types.AccuracyStats", "modulename": "vanna.types", "qualname": "AccuracyStats", "kind": "class", "doc": "

\n"}, "vanna.types.AccuracyStats.__init__": {"fullname": "vanna.types.AccuracyStats.__init__", "modulename": "vanna.types", "qualname": "AccuracyStats.__init__", "kind": "function", "doc": "

\n", "signature": "(num_questions: int, data: Dict[str, int])"}, "vanna.types.AccuracyStats.num_questions": {"fullname": "vanna.types.AccuracyStats.num_questions", "modulename": "vanna.types", "qualname": "AccuracyStats.num_questions", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "vanna.types.AccuracyStats.data": {"fullname": "vanna.types.AccuracyStats.data", "modulename": "vanna.types", "qualname": "AccuracyStats.data", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, int]"}, "vanna.types.Followup": {"fullname": "vanna.types.Followup", "modulename": "vanna.types", "qualname": "Followup", "kind": "class", "doc": "

\n"}, "vanna.types.Followup.__init__": {"fullname": "vanna.types.Followup.__init__", "modulename": "vanna.types", "qualname": "Followup.__init__", "kind": "function", "doc": "

\n", "signature": "(followup: str)"}, "vanna.types.Followup.followup": {"fullname": "vanna.types.Followup.followup", "modulename": "vanna.types", "qualname": "Followup.followup", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.QuestionEmbedding": {"fullname": "vanna.types.QuestionEmbedding", "modulename": "vanna.types", "qualname": "QuestionEmbedding", "kind": "class", "doc": "

\n"}, "vanna.types.QuestionEmbedding.__init__": {"fullname": "vanna.types.QuestionEmbedding.__init__", "modulename": "vanna.types", "qualname": "QuestionEmbedding.__init__", "kind": "function", "doc": "

\n", "signature": "(question: vanna.types.Question, embedding: List[float])"}, "vanna.types.QuestionEmbedding.question": {"fullname": "vanna.types.QuestionEmbedding.question", "modulename": "vanna.types", "qualname": "QuestionEmbedding.question", "kind": "variable", "doc": "

\n", "annotation": ": vanna.types.Question"}, "vanna.types.QuestionEmbedding.embedding": {"fullname": "vanna.types.QuestionEmbedding.embedding", "modulename": "vanna.types", "qualname": "QuestionEmbedding.embedding", "kind": "variable", "doc": "

\n", "annotation": ": List[float]"}, "vanna.types.Connection": {"fullname": "vanna.types.Connection", "modulename": "vanna.types", "qualname": "Connection", "kind": "class", "doc": "

\n"}, "vanna.types.SQLAnswer": {"fullname": "vanna.types.SQLAnswer", "modulename": "vanna.types", "qualname": "SQLAnswer", "kind": "class", "doc": "

\n"}, "vanna.types.SQLAnswer.__init__": {"fullname": "vanna.types.SQLAnswer.__init__", "modulename": "vanna.types", "qualname": "SQLAnswer.__init__", "kind": "function", "doc": "

\n", "signature": "(raw_answer: str, prefix: str, postfix: str, sql: str)"}, "vanna.types.SQLAnswer.raw_answer": {"fullname": "vanna.types.SQLAnswer.raw_answer", "modulename": "vanna.types", "qualname": "SQLAnswer.raw_answer", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.SQLAnswer.prefix": {"fullname": "vanna.types.SQLAnswer.prefix", "modulename": "vanna.types", "qualname": "SQLAnswer.prefix", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.SQLAnswer.postfix": {"fullname": "vanna.types.SQLAnswer.postfix", "modulename": "vanna.types", "qualname": "SQLAnswer.postfix", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.SQLAnswer.sql": {"fullname": "vanna.types.SQLAnswer.sql", "modulename": "vanna.types", "qualname": "SQLAnswer.sql", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Explanation": {"fullname": "vanna.types.Explanation", "modulename": "vanna.types", "qualname": "Explanation", "kind": "class", "doc": "

\n"}, "vanna.types.Explanation.__init__": {"fullname": "vanna.types.Explanation.__init__", "modulename": "vanna.types", "qualname": "Explanation.__init__", "kind": "function", "doc": "

\n", "signature": "(explanation: str)"}, "vanna.types.Explanation.explanation": {"fullname": "vanna.types.Explanation.explanation", "modulename": "vanna.types", "qualname": "Explanation.explanation", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.DataResult": {"fullname": "vanna.types.DataResult", "modulename": "vanna.types", "qualname": "DataResult", "kind": "class", "doc": "

\n"}, "vanna.types.DataResult.__init__": {"fullname": "vanna.types.DataResult.__init__", "modulename": "vanna.types", "qualname": "DataResult.__init__", "kind": "function", "doc": "

\n", "signature": "(\tquestion: str | None,\tsql: str | None,\ttable_markdown: str,\terror: str | None,\tcorrection_attempts: int)"}, "vanna.types.DataResult.question": {"fullname": "vanna.types.DataResult.question", "modulename": "vanna.types", "qualname": "DataResult.question", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.DataResult.sql": {"fullname": "vanna.types.DataResult.sql", "modulename": "vanna.types", "qualname": "DataResult.sql", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.DataResult.table_markdown": {"fullname": "vanna.types.DataResult.table_markdown", "modulename": "vanna.types", "qualname": "DataResult.table_markdown", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.DataResult.error": {"fullname": "vanna.types.DataResult.error", "modulename": "vanna.types", "qualname": "DataResult.error", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.DataResult.correction_attempts": {"fullname": "vanna.types.DataResult.correction_attempts", "modulename": "vanna.types", "qualname": "DataResult.correction_attempts", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "vanna.types.PlotlyResult": {"fullname": "vanna.types.PlotlyResult", "modulename": "vanna.types", "qualname": "PlotlyResult", "kind": "class", "doc": "

\n"}, "vanna.types.PlotlyResult.__init__": {"fullname": "vanna.types.PlotlyResult.__init__", "modulename": "vanna.types", "qualname": "PlotlyResult.__init__", "kind": "function", "doc": "

\n", "signature": "(plotly_code: str)"}, "vanna.types.PlotlyResult.plotly_code": {"fullname": "vanna.types.PlotlyResult.plotly_code", "modulename": "vanna.types", "qualname": "PlotlyResult.plotly_code", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.WarehouseDefinition": {"fullname": "vanna.types.WarehouseDefinition", "modulename": "vanna.types", "qualname": "WarehouseDefinition", "kind": "class", "doc": "

\n"}, "vanna.types.WarehouseDefinition.__init__": {"fullname": "vanna.types.WarehouseDefinition.__init__", "modulename": "vanna.types", "qualname": "WarehouseDefinition.__init__", "kind": "function", "doc": "

\n", "signature": "(name: str, tables: List[vanna.types.TableDefinition])"}, "vanna.types.WarehouseDefinition.name": {"fullname": "vanna.types.WarehouseDefinition.name", "modulename": "vanna.types", "qualname": "WarehouseDefinition.name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.WarehouseDefinition.tables": {"fullname": "vanna.types.WarehouseDefinition.tables", "modulename": "vanna.types", "qualname": "WarehouseDefinition.tables", "kind": "variable", "doc": "

\n", "annotation": ": List[vanna.types.TableDefinition]"}, "vanna.types.TableDefinition": {"fullname": "vanna.types.TableDefinition", "modulename": "vanna.types", "qualname": "TableDefinition", "kind": "class", "doc": "

\n"}, "vanna.types.TableDefinition.__init__": {"fullname": "vanna.types.TableDefinition.__init__", "modulename": "vanna.types", "qualname": "TableDefinition.__init__", "kind": "function", "doc": "

\n", "signature": "(\tschema_name: str,\ttable_name: str,\tddl: str | None,\tcolumns: List[vanna.types.ColumnDefinition])"}, "vanna.types.TableDefinition.schema_name": {"fullname": "vanna.types.TableDefinition.schema_name", "modulename": "vanna.types", "qualname": "TableDefinition.schema_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.TableDefinition.table_name": {"fullname": "vanna.types.TableDefinition.table_name", "modulename": "vanna.types", "qualname": "TableDefinition.table_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.TableDefinition.ddl": {"fullname": "vanna.types.TableDefinition.ddl", "modulename": "vanna.types", "qualname": "TableDefinition.ddl", "kind": "variable", "doc": "

\n", "annotation": ": str | None"}, "vanna.types.TableDefinition.columns": {"fullname": "vanna.types.TableDefinition.columns", "modulename": "vanna.types", "qualname": "TableDefinition.columns", "kind": "variable", "doc": "

\n", "annotation": ": List[vanna.types.ColumnDefinition]"}, "vanna.types.ColumnDefinition": {"fullname": "vanna.types.ColumnDefinition", "modulename": "vanna.types", "qualname": "ColumnDefinition", "kind": "class", "doc": "

\n"}, "vanna.types.ColumnDefinition.__init__": {"fullname": "vanna.types.ColumnDefinition.__init__", "modulename": "vanna.types", "qualname": "ColumnDefinition.__init__", "kind": "function", "doc": "

\n", "signature": "(\tname: str,\ttype: str,\tis_primary_key: bool,\tis_foreign_key: bool,\tforeign_key_table: str,\tforeign_key_column: str)"}, "vanna.types.ColumnDefinition.name": {"fullname": "vanna.types.ColumnDefinition.name", "modulename": "vanna.types", "qualname": "ColumnDefinition.name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.ColumnDefinition.type": {"fullname": "vanna.types.ColumnDefinition.type", "modulename": "vanna.types", "qualname": "ColumnDefinition.type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.ColumnDefinition.is_primary_key": {"fullname": "vanna.types.ColumnDefinition.is_primary_key", "modulename": "vanna.types", "qualname": "ColumnDefinition.is_primary_key", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "vanna.types.ColumnDefinition.is_foreign_key": {"fullname": "vanna.types.ColumnDefinition.is_foreign_key", "modulename": "vanna.types", "qualname": "ColumnDefinition.is_foreign_key", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "vanna.types.ColumnDefinition.foreign_key_table": {"fullname": "vanna.types.ColumnDefinition.foreign_key_table", "modulename": "vanna.types", "qualname": "ColumnDefinition.foreign_key_table", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.ColumnDefinition.foreign_key_column": {"fullname": "vanna.types.ColumnDefinition.foreign_key_column", "modulename": "vanna.types", "qualname": "ColumnDefinition.foreign_key_column", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Diagram": {"fullname": "vanna.types.Diagram", "modulename": "vanna.types", "qualname": "Diagram", "kind": "class", "doc": "

\n"}, "vanna.types.Diagram.__init__": {"fullname": "vanna.types.Diagram.__init__", "modulename": "vanna.types", "qualname": "Diagram.__init__", "kind": "function", "doc": "

\n", "signature": "(raw: str, mermaid_code: str)"}, "vanna.types.Diagram.raw": {"fullname": "vanna.types.Diagram.raw", "modulename": "vanna.types", "qualname": "Diagram.raw", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.Diagram.mermaid_code": {"fullname": "vanna.types.Diagram.mermaid_code", "modulename": "vanna.types", "qualname": "Diagram.mermaid_code", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.StringData": {"fullname": "vanna.types.StringData", "modulename": "vanna.types", "qualname": "StringData", "kind": "class", "doc": "

\n"}, "vanna.types.StringData.__init__": {"fullname": "vanna.types.StringData.__init__", "modulename": "vanna.types", "qualname": "StringData.__init__", "kind": "function", "doc": "

\n", "signature": "(data: str)"}, "vanna.types.StringData.data": {"fullname": "vanna.types.StringData.data", "modulename": "vanna.types", "qualname": "StringData.data", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.DataFrameJSON": {"fullname": "vanna.types.DataFrameJSON", "modulename": "vanna.types", "qualname": "DataFrameJSON", "kind": "class", "doc": "

\n"}, "vanna.types.DataFrameJSON.__init__": {"fullname": "vanna.types.DataFrameJSON.__init__", "modulename": "vanna.types", "qualname": "DataFrameJSON.__init__", "kind": "function", "doc": "

\n", "signature": "(data: str)"}, "vanna.types.DataFrameJSON.data": {"fullname": "vanna.types.DataFrameJSON.data", "modulename": "vanna.types", "qualname": "DataFrameJSON.data", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.TrainingData": {"fullname": "vanna.types.TrainingData", "modulename": "vanna.types", "qualname": "TrainingData", "kind": "class", "doc": "

\n"}, "vanna.types.TrainingData.__init__": {"fullname": "vanna.types.TrainingData.__init__", "modulename": "vanna.types", "qualname": "TrainingData.__init__", "kind": "function", "doc": "

\n", "signature": "(questions: List[dict], ddl: List[str], documentation: List[str])"}, "vanna.types.TrainingData.questions": {"fullname": "vanna.types.TrainingData.questions", "modulename": "vanna.types", "qualname": "TrainingData.questions", "kind": "variable", "doc": "

\n", "annotation": ": List[dict]"}, "vanna.types.TrainingData.ddl": {"fullname": "vanna.types.TrainingData.ddl", "modulename": "vanna.types", "qualname": "TrainingData.ddl", "kind": "variable", "doc": "

\n", "annotation": ": List[str]"}, "vanna.types.TrainingData.documentation": {"fullname": "vanna.types.TrainingData.documentation", "modulename": "vanna.types", "qualname": "TrainingData.documentation", "kind": "variable", "doc": "

\n", "annotation": ": List[str]"}, "vanna.types.TrainingPlanItem": {"fullname": "vanna.types.TrainingPlanItem", "modulename": "vanna.types", "qualname": "TrainingPlanItem", "kind": "class", "doc": "

\n"}, "vanna.types.TrainingPlanItem.__init__": {"fullname": "vanna.types.TrainingPlanItem.__init__", "modulename": "vanna.types", "qualname": "TrainingPlanItem.__init__", "kind": "function", "doc": "

\n", "signature": "(item_type: str, item_group: str, item_name: str, item_value: str)"}, "vanna.types.TrainingPlanItem.item_type": {"fullname": "vanna.types.TrainingPlanItem.item_type", "modulename": "vanna.types", "qualname": "TrainingPlanItem.item_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.TrainingPlanItem.item_group": {"fullname": "vanna.types.TrainingPlanItem.item_group", "modulename": "vanna.types", "qualname": "TrainingPlanItem.item_group", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.TrainingPlanItem.item_name": {"fullname": "vanna.types.TrainingPlanItem.item_name", "modulename": "vanna.types", "qualname": "TrainingPlanItem.item_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.TrainingPlanItem.item_value": {"fullname": "vanna.types.TrainingPlanItem.item_value", "modulename": "vanna.types", "qualname": "TrainingPlanItem.item_value", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"fullname": "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL", "modulename": "vanna.types", "qualname": "TrainingPlanItem.ITEM_TYPE_SQL", "kind": "variable", "doc": "

\n", "default_value": "'sql'"}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"fullname": "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL", "modulename": "vanna.types", "qualname": "TrainingPlanItem.ITEM_TYPE_DDL", "kind": "variable", "doc": "

\n", "default_value": "'ddl'"}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"fullname": "vanna.types.TrainingPlanItem.ITEM_TYPE_IS", "modulename": "vanna.types", "qualname": "TrainingPlanItem.ITEM_TYPE_IS", "kind": "variable", "doc": "

\n", "default_value": "'is'"}, "vanna.types.TrainingPlan": {"fullname": "vanna.types.TrainingPlan", "modulename": "vanna.types", "qualname": "TrainingPlan", "kind": "class", "doc": "

A class representing a training plan. You can see what's in it, and remove items from it that you don't want trained.

\n\n

Example:

\n\n
\n
plan = vn.get_training_plan()\n\nplan.get_summary()\n
\n
\n"}, "vanna.types.TrainingPlan.__init__": {"fullname": "vanna.types.TrainingPlan.__init__", "modulename": "vanna.types", "qualname": "TrainingPlan.__init__", "kind": "function", "doc": "

\n", "signature": "(plan: List[vanna.types.TrainingPlanItem])"}, "vanna.types.TrainingPlan.get_summary": {"fullname": "vanna.types.TrainingPlan.get_summary", "modulename": "vanna.types", "qualname": "TrainingPlan.get_summary", "kind": "function", "doc": "

Example:

\n\n
\n
plan = vn.get_training_plan()\n\nplan.get_summary()\n
\n
\n\n

Get a summary of the training plan.

\n\n
Returns:
\n\n
\n

List[str]: A list of strings describing the training plan.

\n
\n", "signature": "(self) -> List[str]:", "funcdef": "def"}, "vanna.types.TrainingPlan.remove_item": {"fullname": "vanna.types.TrainingPlan.remove_item", "modulename": "vanna.types", "qualname": "TrainingPlan.remove_item", "kind": "function", "doc": "

Example:

\n\n
\n
plan = vn.get_training_plan()\n\nplan.remove_item("Train on SQL: What is the average salary of employees?")\n
\n
\n\n

Remove an item from the training plan.

\n\n
Arguments:
\n\n
    \n
  • item (str): The item to remove.
  • \n
\n", "signature": "(self, item: str):", "funcdef": "def"}, "vanna.utils": {"fullname": "vanna.utils", "modulename": "vanna.utils", "kind": "module", "doc": "

\n"}, "vanna.utils.validate_config_path": {"fullname": "vanna.utils.validate_config_path", "modulename": "vanna.utils", "qualname": "validate_config_path", "kind": "function", "doc": "

\n", "signature": "(path):", "funcdef": "def"}, "vanna.utils.sanitize_model_name": {"fullname": "vanna.utils.sanitize_model_name", "modulename": "vanna.utils", "qualname": "sanitize_model_name", "kind": "function", "doc": "

\n", "signature": "(model_name):", "funcdef": "def"}}, "docInfo": {"vanna": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 1099}, "vanna.api_key": {"qualname": 2, "fullname": 3, "annotation": 2, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "vanna.fig_as_img": {"qualname": 3, "fullname": 4, "annotation": 2, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "vanna.run_sql": {"qualname": 2, "fullname": 3, "annotation": 6, "default_value": 1, "signature": 0, "bases": 0, "doc": 106}, "vanna.get_api_key": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 117}, "vanna.set_api_key": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 100}, "vanna.get_models": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 64}, "vanna.create_model": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 135}, "vanna.add_user_to_model": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 149}, "vanna.update_model_visibility": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 116}, "vanna.set_model": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 73}, "vanna.add_sql": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 176}, "vanna.add_ddl": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 106}, "vanna.add_documentation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 113}, "vanna.TrainingPlanItem": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.TrainingPlanItem.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 3}, "vanna.TrainingPlanItem.item_type": {"qualname": 3, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.TrainingPlanItem.item_group": {"qualname": 3, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.TrainingPlanItem.item_name": {"qualname": 3, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.TrainingPlanItem.item_value": {"qualname": 3, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "vanna.TrainingPlan": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 75}, "vanna.TrainingPlan.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "vanna.TrainingPlan.get_summary": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 77}, "vanna.TrainingPlan.remove_item": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 95}, "vanna.get_training_plan_postgres": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 112, "bases": 0, "doc": 3}, "vanna.get_training_plan_generic": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "vanna.get_training_plan_experimental": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 112, "bases": 0, "doc": 130}, "vanna.train": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 142, "bases": 0, "doc": 280}, "vanna.flag_sql_for_review": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 69, "bases": 0, "doc": 149}, "vanna.remove_sql": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 83}, "vanna.remove_training_data": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 75}, "vanna.generate_sql": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 113}, "vanna.get_related_training_data": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 115}, "vanna.generate_meta": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 116}, "vanna.generate_followup_questions": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 166}, "vanna.generate_questions": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 82}, "vanna.ask": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 170, "bases": 0, "doc": 323}, "vanna.generate_plotly_code": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 94, "bases": 0, "doc": 201}, "vanna.get_plotly_figure": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 150}, "vanna.get_results": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 98}, "vanna.generate_explanation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 131}, "vanna.generate_question": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 123}, "vanna.get_all_questions": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 73}, "vanna.get_training_data": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 70}, "vanna.connect_to_sqlite": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 55}, "vanna.connect_to_snowflake": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 74, "bases": 0, "doc": 210}, "vanna.connect_to_postgres": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 96, "bases": 0, "doc": 193}, "vanna.connect_to_bigquery": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 130}, "vanna.base": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.base.base": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 16}, "vanna.base.base.VannaBase.config": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.run_sql_is_set": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.generate_sql": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.generate_followup_questions": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.generate_questions": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 42}, "vanna.base.base.VannaBase.generate_embedding": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.get_similar_question_sql": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.get_related_ddl": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.get_related_documentation": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.add_question_sql": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.add_ddl": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.add_documentation": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.get_training_data": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.remove_training_data": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.get_sql_prompt": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.submit_prompt": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.generate_question": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.generate_plotly_code": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.connect_to_snowflake": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 104, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.connect_to_sqlite": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 55}, "vanna.base.base.VannaBase.connect_to_postgres": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 102, "bases": 0, "doc": 186}, "vanna.base.base.VannaBase.connect_to_bigquery": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 123}, "vanna.base.base.VannaBase.run_sql": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.ask": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 143, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.train": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 115, "bases": 0, "doc": 225}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 123, "bases": 0, "doc": 3}, "vanna.base.base.VannaBase.get_plotly_figure": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 89, "bases": 0, "doc": 150}, "vanna.base.base.SplitStorage": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.get_related_ddl": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.get_related_documentation": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"qualname": 6, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.get_question_sql": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.get_documentation": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 3}, "vanna.base.base.SplitStorage.get_ddl": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 3}, "vanna.chromadb": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.default_ef": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 12, "signature": 0, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.exceptions": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.exceptions.ImproperlyConfigured": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 7}, "vanna.exceptions.DependencyError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 7}, "vanna.exceptions.ConnectionError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 5}, "vanna.exceptions.OTPCodeError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 12}, "vanna.exceptions.SQLRemoveError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 9}, "vanna.exceptions.ExecutionError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 9}, "vanna.exceptions.ValidationError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 5}, "vanna.exceptions.APIError": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 6}, "vanna.local": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.local.LocalContext_OpenAI": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 12, "doc": 16}, "vanna.local.LocalContext_OpenAI.__init__": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.openai": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.openai.openai_chat": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"qualname": 7, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"qualname": 6, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 94, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 3}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "vanna.openai.openai_embeddings": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "vanna.remote": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.remote.VannaDefault": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "vanna.remote.VannaDefault.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 3}, "vanna.remote.VannaDefault.get_training_data": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 70}, "vanna.remote.VannaDefault.remove_training_data": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 75}, "vanna.remote.VannaDefault.generate_questions": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 82}, "vanna.remote.VannaDefault.add_ddl": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 102}, "vanna.remote.VannaDefault.add_documentation": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 109}, "vanna.remote.VannaDefault.add_question_sql": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 172}, "vanna.remote.VannaDefault.generate_embedding": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 16}, "vanna.remote.VannaDefault.generate_plotly_code": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 207}, "vanna.remote.VannaDefault.generate_question": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 123}, "vanna.remote.VannaDefault.get_sql_prompt": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 16}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 94, "bases": 0, "doc": 16}, "vanna.remote.VannaDefault.submit_prompt": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 16}, "vanna.remote.VannaDefault.get_similar_question_sql": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 17}, "vanna.remote.VannaDefault.get_related_ddl": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 18}, "vanna.remote.VannaDefault.get_related_documentation": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 17}, "vanna.remote.VannaDefault.generate_sql": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 115}, "vanna.remote.VannaDefault.generate_followup_questions": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 166}, "vanna.types": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Status": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Status.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 3}, "vanna.types.Status.success": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Status.message": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.StatusWithId": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.StatusWithId.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "vanna.types.StatusWithId.success": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.StatusWithId.message": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.StatusWithId.id": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionList": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionList.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "vanna.types.QuestionList.questions": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 127, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.id": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.question": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.answer": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.data": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.FullQuestionDocument.plotly": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.question": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.sql": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionSQLPair.tag": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "vanna.types.Organization.name": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization.user": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Organization.connection": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.OrganizationList": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.OrganizationList.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "vanna.types.OrganizationList.organizations": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionStringList": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionStringList.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "vanna.types.QuestionStringList.questions": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Visibility": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Visibility.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Visibility.visibility": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.UserEmail": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.UserEmail.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.UserEmail.email": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.NewOrganization": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.NewOrganization.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "vanna.types.NewOrganization.org_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.NewOrganization.db_type": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.NewOrganizationMember": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.NewOrganizationMember.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 3}, "vanna.types.NewOrganizationMember.org_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.NewOrganizationMember.email": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.NewOrganizationMember.is_admin": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.UserOTP": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.UserOTP.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 3}, "vanna.types.UserOTP.email": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.UserOTP.otp": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ApiKey": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ApiKey.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.ApiKey.key": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionId": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionId.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.QuestionId.id": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Question": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Question.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Question.question": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.question": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.category": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.SQL_RAN": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats.num_questions": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.AccuracyStats.data": {"qualname": 2, "fullname": 4, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Followup": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Followup.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Followup.followup": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding.question": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.QuestionEmbedding.embedding": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Connection": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.raw_answer": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.prefix": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.postfix": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.SQLAnswer.sql": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Explanation": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Explanation.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.Explanation.explanation": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 79, "bases": 0, "doc": 3}, "vanna.types.DataResult.question": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.sql": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.table_markdown": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.error": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataResult.correction_attempts": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.PlotlyResult": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.PlotlyResult.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 15, "bases": 0, "doc": 3}, "vanna.types.PlotlyResult.plotly_code": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition.name": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.WarehouseDefinition.tables": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.schema_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.table_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.ddl": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TableDefinition.columns": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.name": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.type": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.is_primary_key": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.is_foreign_key": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.foreign_key_table": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.ColumnDefinition.foreign_key_column": {"qualname": 4, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Diagram": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Diagram.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "vanna.types.Diagram.raw": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.Diagram.mermaid_code": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.StringData": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.StringData.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.StringData.data": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataFrameJSON": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.DataFrameJSON.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "vanna.types.DataFrameJSON.data": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingData": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingData.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "vanna.types.TrainingData.questions": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingData.ddl": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingData.documentation": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingPlanItem": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingPlanItem.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 3}, "vanna.types.TrainingPlanItem.item_type": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingPlanItem.item_group": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingPlanItem.item_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingPlanItem.item_value": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "vanna.types.TrainingPlan": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 75}, "vanna.types.TrainingPlan.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "vanna.types.TrainingPlan.get_summary": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 77}, "vanna.types.TrainingPlan.remove_item": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 95}, "vanna.utils": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "vanna.utils.validate_config_path": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "vanna.utils.sanitize_model_name": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 3}}, "length": 318, "save": true}, "index": {"qualname": {"root": {"docs": {"vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.Visibility.__init__": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}}, "df": 37, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.APIError": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ApiKey": {"tf": 1}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.ApiKey.key": {"tf": 1}}, "df": 3}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"vanna.fig_as_img": {"tf": 1}}, "df": 1, "k": {"docs": {"vanna.ask": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 16}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.NewOrganizationMember.is_admin": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_all_questions": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.types.ApiKey.key": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 8}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"vanna.fig_as_img": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "g": {"docs": {"vanna.fig_as_img": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.exceptions.ImproperlyConfigured": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.Visibility.__init__": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}}, "df": 37}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"vanna.TrainingPlanItem.item_type": {"tf": 1}, "vanna.TrainingPlanItem.item_group": {"tf": 1}, "vanna.TrainingPlanItem.item_name": {"tf": 1}, "vanna.TrainingPlanItem.item_value": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 16}}}, "s": {"docs": {"vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}, "vanna.types.NewOrganizationMember.is_admin": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}}, "df": 6}, "d": {"docs": {"vanna.types.StatusWithId.id": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 7}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.get_related_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 11}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}}, "df": 1}, "w": {"docs": {"vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.run_sql": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}}, "df": 32, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.SQLRemoveError": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}}, "df": 6}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna.set_api_key": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status.success": {"tf": 1}, "vanna.types.StatusWithId.success": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}}, "df": 5}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base.base.SplitStorage": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}}, "df": 13}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}}, "df": 3}}}, "r": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.StringData": {"tf": 1}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.StringData.data": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}}, "df": 4, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.StatusWithId": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.StatusWithId.success": {"tf": 1}, "vanna.types.StatusWithId.message": {"tf": 1}, "vanna.types.StatusWithId.id": {"tf": 1}}, "df": 5}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TableDefinition.schema_name": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_generic": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 41}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"vanna.get_training_plan_generic": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 23, "d": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 5, "s": {"docs": {"vanna.get_models": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.generate_meta": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.StatusWithId.message": {"tf": 1}}, "df": 5}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.create_model": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 6}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.connection": {"tf": 1}, "vanna.types.Connection": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.ConnectionError": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"vanna.base.base.VannaBase.config": {"tf": 1}, "vanna.utils.validate_config_path": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1}}, "df": 3}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "b": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}}, "df": 14}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}}, "df": 13}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.category": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.UserEmail": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.UserEmail.email": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.UserOTP": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}, "vanna.types.UserOTP.email": {"tf": 1}, "vanna.types.UserOTP.otp": {"tf": 1}}, "df": 4}}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.update_model_visibility": {"tf": 1}}, "df": 1, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 14, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_generic": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 14, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.TrainingPlan": {"tf": 1}, "vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"vanna.TrainingPlanItem": {"tf": 1}, "vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.TrainingPlanItem.item_type": {"tf": 1}, "vanna.TrainingPlanItem.item_group": {"tf": 1}, "vanna.TrainingPlanItem.item_name": {"tf": 1}, "vanna.TrainingPlanItem.item_value": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.types.TrainingPlanItem": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}}, "df": 18}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TrainingData": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}, "vanna.types.TrainingData.questions": {"tf": 1}, "vanna.types.TrainingData.ddl": {"tf": 1}, "vanna.types.TrainingData.documentation": {"tf": 1}}, "df": 5}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlanItem.item_type": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.types.NewOrganization.db_type": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionSQLPair.tag": {"tf": 1}}, "df": 1}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"vanna.update_model_visibility": {"tf": 1}, "vanna.types.Visibility": {"tf": 1}, "vanna.types.Visibility.__init__": {"tf": 1}, "vanna.types.Visibility.visibility": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.ValidationError": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"vanna.utils.validate_config_path": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.VannaBase.config": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 29}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 19}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}}, "df": 14}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.add_ddl": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TrainingData.ddl": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}}, "df": 17}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.types.TrainingData.documentation": {"tf": 1}}, "df": 14}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.remove_training_data": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.StringData.data": {"tf": 1}, "vanna.types.DataFrameJSON.data": {"tf": 1}}, "df": 13, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 7}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataFrameJSON": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.data": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.DependencyError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "b": {"docs": {"vanna.types.NewOrganization.db_type": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.NewOrganization": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganization.db_type": {"tf": 1}}, "df": 4, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.NewOrganizationMember": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.email": {"tf": 1}, "vanna.types.NewOrganizationMember.is_admin": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_generic": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 8, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 3}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.postfix": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}}, "df": 12}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.prefix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"vanna.utils.validate_config_path": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.ExecutionError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 8, "s": {"docs": {"vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.UserEmail.email": {"tf": 1}, "vanna.types.NewOrganizationMember.email": {"tf": 1}, "vanna.types.UserOTP.email": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.DataResult.error": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}}, "df": 22, "s": {"docs": {"vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.QuestionStringList.questions": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.TrainingData.questions": {"tf": 1}}, "df": 14, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionSQLPair.tag": {"tf": 1}}, "df": 5}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionStringList": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.questions": {"tf": 1}}, "df": 3}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 12}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.UserOTP.otp": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.OTPCodeError": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {"vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}}, "df": 17}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.OrganizationList": {"tf": 1}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.OrganizationList.organizations": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"vanna.types.OrganizationList.organizations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}, "fullname": {"root": {"docs": {"vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.Visibility.__init__": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}}, "df": 37, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}, "vanna.api_key": {"tf": 1}, "vanna.fig_as_img": {"tf": 1}, "vanna.run_sql": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlanItem": {"tf": 1}, "vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.TrainingPlanItem.item_type": {"tf": 1}, "vanna.TrainingPlanItem.item_group": {"tf": 1}, "vanna.TrainingPlanItem.item_name": {"tf": 1}, "vanna.TrainingPlanItem.item_value": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1}, "vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_generic": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base": {"tf": 1}, "vanna.base.base": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.VannaBase.config": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}, "vanna.chromadb": {"tf": 1}, "vanna.chromadb.chromadb_vector": {"tf": 1}, "vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.exceptions": {"tf": 1}, "vanna.exceptions.ImproperlyConfigured": {"tf": 1}, "vanna.exceptions.DependencyError": {"tf": 1}, "vanna.exceptions.ConnectionError": {"tf": 1}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}, "vanna.exceptions.ValidationError": {"tf": 1}, "vanna.exceptions.APIError": {"tf": 1}, "vanna.local": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}, "vanna.openai": {"tf": 1}, "vanna.openai.openai_chat": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.openai.openai_embeddings": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types": {"tf": 1}, "vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.StatusWithId": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.StatusWithId.success": {"tf": 1}, "vanna.types.StatusWithId.message": {"tf": 1}, "vanna.types.StatusWithId.id": {"tf": 1}, "vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionSQLPair.tag": {"tf": 1}, "vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.OrganizationList": {"tf": 1}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.OrganizationList.organizations": {"tf": 1}, "vanna.types.QuestionStringList": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.questions": {"tf": 1}, "vanna.types.Visibility": {"tf": 1}, "vanna.types.Visibility.__init__": {"tf": 1}, "vanna.types.Visibility.visibility": {"tf": 1}, "vanna.types.UserEmail": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.UserEmail.email": {"tf": 1}, "vanna.types.NewOrganization": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganization.db_type": {"tf": 1}, "vanna.types.NewOrganizationMember": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.email": {"tf": 1}, "vanna.types.NewOrganizationMember.is_admin": {"tf": 1}, "vanna.types.UserOTP": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}, "vanna.types.UserOTP.email": {"tf": 1}, "vanna.types.UserOTP.otp": {"tf": 1}, "vanna.types.ApiKey": {"tf": 1}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.ApiKey.key": {"tf": 1}, "vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}, "vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}, "vanna.types.Connection": {"tf": 1}, "vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}, "vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}, "vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}, "vanna.types.StringData": {"tf": 1}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.StringData.data": {"tf": 1}, "vanna.types.DataFrameJSON": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.data": {"tf": 1}, "vanna.types.TrainingData": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}, "vanna.types.TrainingData.questions": {"tf": 1}, "vanna.types.TrainingData.ddl": {"tf": 1}, "vanna.types.TrainingData.documentation": {"tf": 1}, "vanna.types.TrainingPlanItem": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}, "vanna.utils": {"tf": 1}, "vanna.utils.validate_config_path": {"tf": 1}, "vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 318, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.VannaBase.config": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 29}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 19}}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.ValidationError": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"vanna.utils.validate_config_path": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"vanna.update_model_visibility": {"tf": 1}, "vanna.types.Visibility": {"tf": 1}, "vanna.types.Visibility.__init__": {"tf": 1}, "vanna.types.Visibility.visibility": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.chromadb.chromadb_vector": {"tf": 1}, "vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}}, "df": 16, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}}, "df": 14}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.APIError": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ApiKey": {"tf": 1}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.ApiKey.key": {"tf": 1}}, "df": 3}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"vanna.fig_as_img": {"tf": 1}}, "df": 1, "k": {"docs": {"vanna.ask": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 16}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.NewOrganizationMember.is_admin": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_all_questions": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.types.ApiKey.key": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 8}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"vanna.fig_as_img": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "g": {"docs": {"vanna.fig_as_img": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.exceptions.ImproperlyConfigured": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.Visibility.__init__": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}}, "df": 37}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"vanna.TrainingPlanItem.item_type": {"tf": 1}, "vanna.TrainingPlanItem.item_group": {"tf": 1}, "vanna.TrainingPlanItem.item_name": {"tf": 1}, "vanna.TrainingPlanItem.item_value": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 16}}}, "s": {"docs": {"vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}, "vanna.types.NewOrganizationMember.is_admin": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}}, "df": 6}, "d": {"docs": {"vanna.types.StatusWithId.id": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 7}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.remote": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 20}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.get_related_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 11}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}}, "df": 1}, "w": {"docs": {"vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.run_sql": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}}, "df": 32, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.SQLRemoveError": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}}, "df": 6}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna.set_api_key": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status.success": {"tf": 1}, "vanna.types.StatusWithId.success": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}}, "df": 5}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base.base.SplitStorage": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}}, "df": 13}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}}, "df": 3}}}, "r": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.StringData": {"tf": 1}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.StringData.data": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}}, "df": 4, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.StatusWithId": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.StatusWithId.success": {"tf": 1}, "vanna.types.StatusWithId.message": {"tf": 1}, "vanna.types.StatusWithId.id": {"tf": 1}}, "df": 5}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TableDefinition.schema_name": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_generic": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 41}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"vanna.get_training_plan_generic": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 23, "d": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 5, "s": {"docs": {"vanna.get_models": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.generate_meta": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.StatusWithId.message": {"tf": 1}}, "df": 5}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.create_model": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 6}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.connection": {"tf": 1}, "vanna.types.Connection": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.ConnectionError": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"vanna.base.base.VannaBase.config": {"tf": 1}, "vanna.utils.validate_config_path": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1}}, "df": 3}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "b": {"docs": {"vanna.chromadb": {"tf": 1}, "vanna.chromadb.chromadb_vector": {"tf": 1.4142135623730951}, "vanna.chromadb.chromadb_vector.default_ef": {"tf": 1.4142135623730951}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1.7320508075688772}}, "df": 17}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna.openai.openai_chat": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1.4142135623730951}}, "df": 14}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.category": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.UserEmail": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.UserEmail.email": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.UserOTP": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}, "vanna.types.UserOTP.email": {"tf": 1}, "vanna.types.UserOTP.otp": {"tf": 1}}, "df": 4}}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.update_model_visibility": {"tf": 1}}, "df": 1, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"vanna.utils": {"tf": 1}, "vanna.utils.validate_config_path": {"tf": 1}, "vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 14, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_generic": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 14, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.TrainingPlan": {"tf": 1}, "vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"vanna.TrainingPlanItem": {"tf": 1}, "vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.TrainingPlanItem.item_type": {"tf": 1}, "vanna.TrainingPlanItem.item_group": {"tf": 1}, "vanna.TrainingPlanItem.item_name": {"tf": 1}, "vanna.TrainingPlanItem.item_value": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.types.TrainingPlanItem": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}}, "df": 18}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.TrainingData": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}, "vanna.types.TrainingData.questions": {"tf": 1}, "vanna.types.TrainingData.ddl": {"tf": 1}, "vanna.types.TrainingData.documentation": {"tf": 1}}, "df": 5}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlanItem.item_type": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.types.NewOrganization.db_type": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}}, "df": 10, "s": {"docs": {"vanna.types": {"tf": 1}, "vanna.types.Status": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.StatusWithId": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.StatusWithId.success": {"tf": 1}, "vanna.types.StatusWithId.message": {"tf": 1}, "vanna.types.StatusWithId.id": {"tf": 1}, "vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionSQLPair.tag": {"tf": 1}, "vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.OrganizationList": {"tf": 1}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.OrganizationList.organizations": {"tf": 1}, "vanna.types.QuestionStringList": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.questions": {"tf": 1}, "vanna.types.Visibility": {"tf": 1}, "vanna.types.Visibility.__init__": {"tf": 1}, "vanna.types.Visibility.visibility": {"tf": 1}, "vanna.types.UserEmail": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.UserEmail.email": {"tf": 1}, "vanna.types.NewOrganization": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganization.db_type": {"tf": 1}, "vanna.types.NewOrganizationMember": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.email": {"tf": 1}, "vanna.types.NewOrganizationMember.is_admin": {"tf": 1}, "vanna.types.UserOTP": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}, "vanna.types.UserOTP.email": {"tf": 1}, "vanna.types.UserOTP.otp": {"tf": 1}, "vanna.types.ApiKey": {"tf": 1}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.ApiKey.key": {"tf": 1}, "vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}, "vanna.types.AccuracyStats": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.Followup": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}, "vanna.types.Connection": {"tf": 1}, "vanna.types.SQLAnswer": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}, "vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}, "vanna.types.ColumnDefinition": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}, "vanna.types.StringData": {"tf": 1}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.StringData.data": {"tf": 1}, "vanna.types.DataFrameJSON": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.data": {"tf": 1}, "vanna.types.TrainingData": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}, "vanna.types.TrainingData.questions": {"tf": 1}, "vanna.types.TrainingData.ddl": {"tf": 1}, "vanna.types.TrainingData.documentation": {"tf": 1}, "vanna.types.TrainingPlanItem": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 153}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionSQLPair.tag": {"tf": 1}}, "df": 1}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.add_ddl": {"tf": 1}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.TrainingData.ddl": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}}, "df": 17}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.types.TrainingData.documentation": {"tf": 1}}, "df": 14}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.remove_training_data": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.StringData.data": {"tf": 1}, "vanna.types.DataFrameJSON.data": {"tf": 1}}, "df": 13, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.DataResult": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 7}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataFrameJSON": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.data": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.DependencyError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "b": {"docs": {"vanna.types.NewOrganization.db_type": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.Diagram": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.NewOrganization": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganization.db_type": {"tf": 1}}, "df": 4, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.NewOrganizationMember": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.email": {"tf": 1}, "vanna.types.NewOrganizationMember.is_admin": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.AccuracyStats.num_questions": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_generic": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 8, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.PlotlyResult": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}}, "df": 3}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.postfix": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}}, "df": 12}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.prefix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"vanna.utils.validate_config_path": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 1}, "vanna.types.Explanation": {"tf": 1}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna.exceptions": {"tf": 1}, "vanna.exceptions.ImproperlyConfigured": {"tf": 1}, "vanna.exceptions.DependencyError": {"tf": 1}, "vanna.exceptions.ConnectionError": {"tf": 1}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}, "vanna.exceptions.ValidationError": {"tf": 1}, "vanna.exceptions.APIError": {"tf": 1}}, "df": 9}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.ExecutionError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 8, "s": {"docs": {"vanna.openai.openai_embeddings": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1.4142135623730951}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"vanna.types.UserEmail.email": {"tf": 1}, "vanna.types.NewOrganizationMember.email": {"tf": 1}, "vanna.types.UserOTP.email": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.DataResult.error": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.Question": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.Question.question": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}}, "df": 22, "s": {"docs": {"vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.QuestionStringList.questions": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.TrainingData.questions": {"tf": 1}}, "df": 14, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.QuestionSQLPair": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionSQLPair.tag": {"tf": 1}}, "df": 5}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionStringList": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.questions": {"tf": 1}}, "df": 3}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionId": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 12}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionEmbedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base": {"tf": 1}, "vanna.base.base": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.config": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_question": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.run_sql": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.ask": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1.4142135623730951}}, "df": 44}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.UserOTP.otp": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.exceptions.OTPCodeError": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {"vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}, "vanna.openai": {"tf": 1}, "vanna.openai.openai_chat": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_embeddings": {"tf": 1.4142135623730951}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1.7320508075688772}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1.7320508075688772}}, "df": 20}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.OrganizationList": {"tf": 1}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.OrganizationList.organizations": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"vanna.types.OrganizationList.organizations": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.local": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}}, "df": 3, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}, "annotation": {"root": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.fig_as_img": {"tf": 1}, "vanna.run_sql": {"tf": 1}, "vanna.TrainingPlanItem.item_type": {"tf": 1}, "vanna.TrainingPlanItem.item_group": {"tf": 1}, "vanna.TrainingPlanItem.item_name": {"tf": 1}, "vanna.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.StatusWithId.success": {"tf": 1}, "vanna.types.StatusWithId.message": {"tf": 1}, "vanna.types.StatusWithId.id": {"tf": 1}, "vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.data": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1.4142135623730951}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.QuestionSQLPair.tag": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1.4142135623730951}, "vanna.types.Organization.connection": {"tf": 1.4142135623730951}, "vanna.types.OrganizationList.organizations": {"tf": 1}, "vanna.types.QuestionStringList.questions": {"tf": 1}, "vanna.types.Visibility.visibility": {"tf": 1}, "vanna.types.UserEmail.email": {"tf": 1}, "vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganization.db_type": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.email": {"tf": 1}, "vanna.types.NewOrganizationMember.is_admin": {"tf": 1}, "vanna.types.UserOTP.email": {"tf": 1}, "vanna.types.UserOTP.otp": {"tf": 1}, "vanna.types.ApiKey.key": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1.4142135623730951}, "vanna.types.DataResult.sql": {"tf": 1.4142135623730951}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1.4142135623730951}, "vanna.types.DataResult.correction_attempts": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1.4142135623730951}, "vanna.types.TableDefinition.columns": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}, "vanna.types.StringData.data": {"tf": 1}, "vanna.types.DataFrameJSON.data": {"tf": 1}, "vanna.types.TrainingData.questions": {"tf": 1}, "vanna.types.TrainingData.ddl": {"tf": 1}, "vanna.types.TrainingData.documentation": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}}, "df": 79, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.types.QuestionSQLPair.tag": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.run_sql": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"vanna.fig_as_img": {"tf": 1}, "vanna.types.Status.success": {"tf": 1}, "vanna.types.StatusWithId.success": {"tf": 1}, "vanna.types.Visibility.visibility": {"tf": 1}, "vanna.types.NewOrganizationMember.is_admin": {"tf": 1}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1}}, "df": 7}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"vanna.run_sql": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.plotly": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.run_sql": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.connection": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.run_sql": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList.questions": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.run_sql": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.data": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.AccuracyStats.data": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.TrainingPlanItem.item_type": {"tf": 1}, "vanna.TrainingPlanItem.item_group": {"tf": 1}, "vanna.TrainingPlanItem.item_name": {"tf": 1}, "vanna.TrainingPlanItem.item_value": {"tf": 1}, "vanna.types.Status.message": {"tf": 1}, "vanna.types.StatusWithId.message": {"tf": 1}, "vanna.types.StatusWithId.id": {"tf": 1}, "vanna.types.QuestionSQLPair.question": {"tf": 1}, "vanna.types.QuestionSQLPair.sql": {"tf": 1}, "vanna.types.Organization.name": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.UserEmail.email": {"tf": 1}, "vanna.types.NewOrganization.org_name": {"tf": 1}, "vanna.types.NewOrganization.db_type": {"tf": 1}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1}, "vanna.types.NewOrganizationMember.email": {"tf": 1}, "vanna.types.UserOTP.email": {"tf": 1}, "vanna.types.UserOTP.otp": {"tf": 1}, "vanna.types.ApiKey.key": {"tf": 1}, "vanna.types.QuestionId.id": {"tf": 1}, "vanna.types.Question.question": {"tf": 1}, "vanna.types.QuestionCategory.question": {"tf": 1}, "vanna.types.QuestionCategory.category": {"tf": 1}, "vanna.types.Followup.followup": {"tf": 1}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1}, "vanna.types.SQLAnswer.prefix": {"tf": 1}, "vanna.types.SQLAnswer.postfix": {"tf": 1}, "vanna.types.SQLAnswer.sql": {"tf": 1}, "vanna.types.Explanation.explanation": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.table_markdown": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1}, "vanna.types.WarehouseDefinition.name": {"tf": 1}, "vanna.types.TableDefinition.schema_name": {"tf": 1}, "vanna.types.TableDefinition.table_name": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}, "vanna.types.ColumnDefinition.name": {"tf": 1}, "vanna.types.ColumnDefinition.type": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1}, "vanna.types.Diagram.raw": {"tf": 1}, "vanna.types.Diagram.mermaid_code": {"tf": 1}, "vanna.types.StringData.data": {"tf": 1}, "vanna.types.DataFrameJSON.data": {"tf": 1}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1}}, "df": 50}}, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.OrganizationList.organizations": {"tf": 1}, "vanna.types.QuestionStringList.questions": {"tf": 1}, "vanna.types.TrainingData.ddl": {"tf": 1}, "vanna.types.TrainingData.documentation": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionEmbedding.embedding": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.TrainingData.questions": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.QuestionList.questions": {"tf": 1}, "vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}, "vanna.types.WarehouseDefinition.tables": {"tf": 1}, "vanna.types.TableDefinition.columns": {"tf": 1}}, "df": 10}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition.tables": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}, "vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}}, "df": 7}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.FullQuestionDocument.question": {"tf": 1}, "vanna.types.QuestionEmbedding.question": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.FullQuestionDocument.id": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.FullQuestionDocument.answer": {"tf": 1}, "vanna.types.FullQuestionDocument.data": {"tf": 1}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1}, "vanna.types.Organization.user": {"tf": 1}, "vanna.types.Organization.connection": {"tf": 1}, "vanna.types.DataResult.question": {"tf": 1}, "vanna.types.DataResult.sql": {"tf": 1}, "vanna.types.DataResult.error": {"tf": 1}, "vanna.types.TableDefinition.ddl": {"tf": 1}}, "df": 9}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.AccuracyStats.num_questions": {"tf": 1}, "vanna.types.AccuracyStats.data": {"tf": 1}, "vanna.types.DataResult.correction_attempts": {"tf": 1}}, "df": 3}}}}}, "default_value": {"root": {"docs": {"vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1.4142135623730951}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1.4142135623730951}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1.4142135623730951}, "vanna.chromadb.chromadb_vector.default_ef": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1.4142135623730951}}, "df": 15, "n": {"docs": {}, "df": 0, "o": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.api_key": {"tf": 1}, "vanna.run_sql": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.fig_as_img": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1}}}, "x": {"2": {"7": {"docs": {"vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1.4142135623730951}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1.4142135623730951}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1.4142135623730951}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1.4142135623730951}}, "df": 14}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1}}, "df": 5}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1}}, "df": 2}}, "l": {"6": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "t": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "b": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}}}}}}, "v": {"2": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "t": {"docs": {"vanna.chromadb.chromadb_vector.default_ef": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.QuestionCategory.SQL_RAN": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1}}, "df": 3}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1}}, "df": 1}}}}}}}}}}, "signature": {"root": {"1": {"4": {"0": {"0": {"0": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"vanna.add_sql": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"vanna.get_api_key": {"tf": 5.916079783099616}, "vanna.set_api_key": {"tf": 4}, "vanna.get_models": {"tf": 3.7416573867739413}, "vanna.create_model": {"tf": 4.898979485566356}, "vanna.add_user_to_model": {"tf": 5.656854249492381}, "vanna.update_model_visibility": {"tf": 4}, "vanna.set_model": {"tf": 3.7416573867739413}, "vanna.add_sql": {"tf": 6.708203932499369}, "vanna.add_ddl": {"tf": 4}, "vanna.add_documentation": {"tf": 4}, "vanna.TrainingPlanItem.__init__": {"tf": 6}, "vanna.TrainingPlan.__init__": {"tf": 4.58257569495584}, "vanna.TrainingPlan.get_summary": {"tf": 4.123105625617661}, "vanna.TrainingPlan.remove_item": {"tf": 4.242640687119285}, "vanna.get_training_plan_postgres": {"tf": 9.38083151964686}, "vanna.get_training_plan_generic": {"tf": 4}, "vanna.get_training_plan_experimental": {"tf": 9.38083151964686}, "vanna.train": {"tf": 10.816653826391969}, "vanna.flag_sql_for_review": {"tf": 7.54983443527075}, "vanna.remove_sql": {"tf": 4}, "vanna.remove_training_data": {"tf": 4}, "vanna.generate_sql": {"tf": 4}, "vanna.get_related_training_data": {"tf": 4.898979485566356}, "vanna.generate_meta": {"tf": 4}, "vanna.generate_followup_questions": {"tf": 6.4031242374328485}, "vanna.generate_questions": {"tf": 3.7416573867739413}, "vanna.ask": {"tf": 11.661903789690601}, "vanna.generate_plotly_code": {"tf": 8.774964387392123}, "vanna.get_plotly_figure": {"tf": 8.12403840463596}, "vanna.get_results": {"tf": 6.324555320336759}, "vanna.generate_explanation": {"tf": 4}, "vanna.generate_question": {"tf": 4}, "vanna.get_all_questions": {"tf": 4.58257569495584}, "vanna.get_training_data": {"tf": 4.58257569495584}, "vanna.connect_to_sqlite": {"tf": 3.7416573867739413}, "vanna.connect_to_snowflake": {"tf": 7.874007874011811}, "vanna.connect_to_postgres": {"tf": 9}, "vanna.connect_to_bigquery": {"tf": 5.830951894845301}, "vanna.base.base.VannaBase.generate_sql": {"tf": 5.0990195135927845}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 5.0990195135927845}, "vanna.base.base.VannaBase.generate_questions": {"tf": 4.795831523312719}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 5.5677643628300215}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 5.0990195135927845}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 5.0990195135927845}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 5.0990195135927845}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 5.830951894845301}, "vanna.base.base.VannaBase.add_ddl": {"tf": 5.0990195135927845}, "vanna.base.base.VannaBase.add_documentation": {"tf": 5.0990195135927845}, "vanna.base.base.VannaBase.get_training_data": {"tf": 5.477225575051661}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 4.69041575982343}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 7.3484692283495345}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 7.3484692283495345}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 4.69041575982343}, "vanna.base.base.VannaBase.generate_question": {"tf": 5.0990195135927845}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 8.06225774829855}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 9.327379053088816}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 4.242640687119285}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 9.273618495495704}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 6.164414002968976}, "vanna.base.base.VannaBase.run_sql": {"tf": 5.830951894845301}, "vanna.base.base.VannaBase.ask": {"tf": 10.723805294763608}, "vanna.base.base.VannaBase.train": {"tf": 9.797958971132712}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 9.848857801796104}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 8.426149773176359}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 5.0990195135927845}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 5.0990195135927845}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 5.5677643628300215}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 5.830951894845301}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 5.0990195135927845}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 5.0990195135927845}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 5.477225575051661}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 5.0990195135927845}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 5.0990195135927845}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 5.0990195135927845}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 5.0990195135927845}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 3.4641016151377544}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 4}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 4}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 4}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 4}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 6.557438524302}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 6.782329983125268}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 6.557438524302}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 7.3484692283495345}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 8.660254037844387}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 5.0990195135927845}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 8.06225774829855}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 4.69041575982343}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 5.5677643628300215}, "vanna.remote.VannaDefault.__init__": {"tf": 5.291502622129181}, "vanna.remote.VannaDefault.get_training_data": {"tf": 5.477225575051661}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 5.0990195135927845}, "vanna.remote.VannaDefault.generate_questions": {"tf": 4.123105625617661}, "vanna.remote.VannaDefault.add_ddl": {"tf": 5.0990195135927845}, "vanna.remote.VannaDefault.add_documentation": {"tf": 5.0990195135927845}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 5.830951894845301}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 5.5677643628300215}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 8.06225774829855}, "vanna.remote.VannaDefault.generate_question": {"tf": 5.0990195135927845}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 7.3484692283495345}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 8.660254037844387}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 4.69041575982343}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 5.0990195135927845}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 5.0990195135927845}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 5.0990195135927845}, "vanna.remote.VannaDefault.generate_sql": {"tf": 5.0990195135927845}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 7.416198487095663}, "vanna.types.Status.__init__": {"tf": 4.47213595499958}, "vanna.types.StatusWithId.__init__": {"tf": 5.291502622129181}, "vanna.types.QuestionList.__init__": {"tf": 5}, "vanna.types.FullQuestionDocument.__init__": {"tf": 10.198039027185569}, "vanna.types.QuestionSQLPair.__init__": {"tf": 5.744562646538029}, "vanna.types.Organization.__init__": {"tf": 7}, "vanna.types.OrganizationList.__init__": {"tf": 4.123105625617661}, "vanna.types.QuestionStringList.__init__": {"tf": 4.123105625617661}, "vanna.types.Visibility.__init__": {"tf": 3.4641016151377544}, "vanna.types.UserEmail.__init__": {"tf": 3.4641016151377544}, "vanna.types.NewOrganization.__init__": {"tf": 4.47213595499958}, "vanna.types.NewOrganizationMember.__init__": {"tf": 5.291502622129181}, "vanna.types.UserOTP.__init__": {"tf": 4.47213595499958}, "vanna.types.ApiKey.__init__": {"tf": 3.4641016151377544}, "vanna.types.QuestionId.__init__": {"tf": 3.4641016151377544}, "vanna.types.Question.__init__": {"tf": 3.4641016151377544}, "vanna.types.QuestionCategory.__init__": {"tf": 4.47213595499958}, "vanna.types.AccuracyStats.__init__": {"tf": 5.477225575051661}, "vanna.types.Followup.__init__": {"tf": 3.4641016151377544}, "vanna.types.QuestionEmbedding.__init__": {"tf": 5.744562646538029}, "vanna.types.SQLAnswer.__init__": {"tf": 6}, "vanna.types.Explanation.__init__": {"tf": 3.4641016151377544}, "vanna.types.DataResult.__init__": {"tf": 8}, "vanna.types.PlotlyResult.__init__": {"tf": 3.4641016151377544}, "vanna.types.WarehouseDefinition.__init__": {"tf": 5.744562646538029}, "vanna.types.TableDefinition.__init__": {"tf": 7.615773105863909}, "vanna.types.ColumnDefinition.__init__": {"tf": 7.615773105863909}, "vanna.types.Diagram.__init__": {"tf": 4.47213595499958}, "vanna.types.StringData.__init__": {"tf": 3.4641016151377544}, "vanna.types.DataFrameJSON.__init__": {"tf": 3.4641016151377544}, "vanna.types.TrainingData.__init__": {"tf": 6.557438524302}, "vanna.types.TrainingPlanItem.__init__": {"tf": 6}, "vanna.types.TrainingPlan.__init__": {"tf": 5}, "vanna.types.TrainingPlan.get_summary": {"tf": 4.123105625617661}, "vanna.types.TrainingPlan.remove_item": {"tf": 4.242640687119285}, "vanna.utils.validate_config_path": {"tf": 3.1622776601683795}, "vanna.utils.sanitize_model_name": {"tf": 3.1622776601683795}}, "df": 154, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}}, "df": 5}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}}, "df": 10}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 2}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Explanation.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.get_api_key": {"tf": 1.7320508075688772}, "vanna.set_api_key": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.create_model": {"tf": 1.4142135623730951}, "vanna.add_user_to_model": {"tf": 1.4142135623730951}, "vanna.set_model": {"tf": 1}, "vanna.add_sql": {"tf": 1.7320508075688772}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlanItem.__init__": {"tf": 2}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.get_training_plan_postgres": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 2.449489742783178}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1.4142135623730951}, "vanna.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 2}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 2.23606797749979}, "vanna.connect_to_postgres": {"tf": 2}, "vanna.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 2}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 2.449489742783178}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 2}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 2.23606797749979}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1.4142135623730951}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1.4142135623730951}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 2}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1.4142135623730951}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1.7320508075688772}, "vanna.types.Organization.__init__": {"tf": 1.4142135623730951}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.UserEmail.__init__": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1.4142135623730951}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1.4142135623730951}, "vanna.types.UserOTP.__init__": {"tf": 1.4142135623730951}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1.4142135623730951}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.Followup.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 2}, "vanna.types.Explanation.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 2}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.__init__": {"tf": 2}, "vanna.types.Diagram.__init__": {"tf": 1.4142135623730951}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlanItem.__init__": {"tf": 2}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 135, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.train": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 29, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 72}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 4, "s": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.Status.__init__": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.types.UserOTP.__init__": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.get_training_plan_postgres": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 2.449489742783178}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.ask": {"tf": 2.23606797749979}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1.4142135623730951}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}}, "df": 12}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {"vanna.ask": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.OrganizationList.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 5}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_followup_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 16}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.Organization.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna.generate_plotly_code": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.QuestionCategory.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.get_training_plan_postgres": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 2.6457513110645907}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 2.23606797749979}, "vanna.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 2.23606797749979}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 2.23606797749979}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1.4142135623730951}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1.7320508075688772}, "vanna.types.Organization.__init__": {"tf": 1.4142135623730951}, "vanna.types.DataResult.__init__": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.__init__": {"tf": 1}}, "df": 26}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1.4142135623730951}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}, "vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 9}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"vanna.types.AccuracyStats.__init__": {"tf": 1}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna.set_api_key": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.types.ApiKey.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 2}}, "df": 4}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.base.base.VannaBase.generate_question": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 61}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_models": {"tf": 1}, "vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.get_training_plan_postgres": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 2.449489742783178}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 2.449489742783178}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1.4142135623730951}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 2.449489742783178}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 2.449489742783178}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.OrganizationList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan.__init__": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 52}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 2, "l": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.remote.VannaDefault.__init__": {"tf": 1}, "vanna.utils.sanitize_model_name": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.add_sql": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}}, "df": 5}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.Diagram.__init__": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "b": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna.add_ddl": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}}, "df": 16}}, "o": {"docs": {}, "df": 0, "c": {"docs": {"vanna.base.base.VannaBase.add_documentation": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}}, "df": 9, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.add_documentation": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}}, "df": 6}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.StringData.__init__": {"tf": 1}, "vanna.types.DataFrameJSON.__init__": {"tf": 1}}, "df": 8, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_results": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_followup_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 16}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 2}}}, "f": {"docs": {"vanna.get_training_plan_generic": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 11}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.NewOrganization.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}}, "df": 5, "s": {"docs": {"vanna.get_related_training_data": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 2.23606797749979}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}}, "df": 10}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}}, "df": 2}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.types.WarehouseDefinition.__init__": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.WarehouseDefinition.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna.ask": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.add_sql": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_generic": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.get_related_training_data": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.ask": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 7}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.ask": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1.4142135623730951}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.get_training_plan_postgres": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.ask": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.types.Status.__init__": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.Visibility.__init__": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1.4142135623730951}}, "df": 25}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}, "vanna.types.ColumnDefinition.__init__": {"tf": 1.4142135623730951}}, "df": 3}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"vanna.TrainingPlanItem.__init__": {"tf": 2}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 2}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna.generate_plotly_code": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {"vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1.4142135623730951}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}}, "df": 3}}}}}}, "d": {"docs": {"vanna.remove_training_data": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.types.StatusWithId.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.QuestionId.__init__": {"tf": 1}}, "df": 9, "s": {"docs": {"vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"vanna.ask": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna.remote.VannaDefault.__init__": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.SQLAnswer.__init__": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.types.DataResult.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"vanna.update_model_visibility": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.ask": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1}, "vanna.types.PlotlyResult.__init__": {"tf": 1}}, "df": 6, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"vanna.generate_followup_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 16}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.utils.validate_config_path": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.ask": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"vanna.base.base.VannaBase.submit_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}}, "df": 6}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.__init__": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna.types.SQLAnswer.__init__": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1.4142135623730951}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1}, "vanna.types.Question.__init__": {"tf": 1}, "vanna.types.QuestionCategory.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1.4142135623730951}, "vanna.types.DataResult.__init__": {"tf": 1}}, "df": 44, "s": {"docs": {"vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.QuestionStringList.__init__": {"tf": 1}, "vanna.types.AccuracyStats.__init__": {"tf": 1}, "vanna.types.TrainingData.__init__": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.types.FullQuestionDocument.__init__": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"vanna.ask": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna.TrainingPlanItem.__init__": {"tf": 1}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.TrainingPlan.__init__": {"tf": 1}, "vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_generic": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}, "vanna.types.QuestionList.__init__": {"tf": 1}, "vanna.types.FullQuestionDocument.__init__": {"tf": 2.23606797749979}, "vanna.types.Organization.__init__": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1}, "vanna.types.TableDefinition.__init__": {"tf": 1}, "vanna.types.TrainingPlan.__init__": {"tf": 1}}, "df": 15}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"vanna.types.Visibility.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1.4142135623730951}}, "df": 3}}}, "e": {"docs": {"vanna.train": {"tf": 1.4142135623730951}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.ask": {"tf": 1.4142135623730951}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.ask": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.generate_followup_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.run_sql": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 16}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna.types.Followup.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"vanna.types.ColumnDefinition.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna.base.base.VannaBase.generate_embedding": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1}}, "df": 5}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.types.QuestionList.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3, "r": {"docs": {"vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.types.Organization.__init__": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {"vanna.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_training_plan_postgres": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 2}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.train": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.ask": {"tf": 1}, "vanna.base.base.VannaBase.ask": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"vanna.types.SQLAnswer.__init__": {"tf": 1}, "vanna.types.Diagram.__init__": {"tf": 1}}, "df": 2}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1}}, "df": 1}}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"vanna.base.base.VannaBase": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}}, "df": 5, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}}, "df": 5}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.local.LocalContext_OpenAI": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.local.LocalContext_OpenAI": {"tf": 1}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1.4142135623730951}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1.4142135623730951}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.exceptions.ImproperlyConfigured": {"tf": 1}, "vanna.exceptions.DependencyError": {"tf": 1}, "vanna.exceptions.ConnectionError": {"tf": 1}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}, "vanna.exceptions.ValidationError": {"tf": 1}, "vanna.exceptions.APIError": {"tf": 1}}, "df": 8}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna.exceptions.ImproperlyConfigured": {"tf": 1}, "vanna.exceptions.DependencyError": {"tf": 1}, "vanna.exceptions.ConnectionError": {"tf": 1}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}, "vanna.exceptions.ValidationError": {"tf": 1}, "vanna.exceptions.APIError": {"tf": 1}}, "df": 8}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "b": {"docs": {"vanna.local.LocalContext_OpenAI": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna.local.LocalContext_OpenAI": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {"vanna.local.LocalContext_OpenAI": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "doc": {"root": {"1": {"0": {"docs": {"vanna": {"tf": 1}}, "df": 1}, "docs": {"vanna.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}}, "df": 2}, "2": {"5": {"5": {"docs": {"vanna": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"vanna": {"tf": 3.605551275463989}, "vanna.add_documentation": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 2}, "vanna.generate_questions": {"tf": 2}, "vanna.get_plotly_figure": {"tf": 2}, "vanna.generate_explanation": {"tf": 2}, "vanna.generate_question": {"tf": 2}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 2}, "vanna.remote.VannaDefault.generate_questions": {"tf": 2}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 2}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 2}}, "df": 12}, "docs": {"vanna": {"tf": 1}}, "df": 1}, "5": {"4": {"3": {"2": {"docs": {"vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"vanna": {"tf": 23}, "vanna.api_key": {"tf": 1.7320508075688772}, "vanna.fig_as_img": {"tf": 1.7320508075688772}, "vanna.run_sql": {"tf": 7.483314773547883}, "vanna.get_api_key": {"tf": 8}, "vanna.set_api_key": {"tf": 8.246211251235321}, "vanna.get_models": {"tf": 6.48074069840786}, "vanna.create_model": {"tf": 8.660254037844387}, "vanna.add_user_to_model": {"tf": 9}, "vanna.update_model_visibility": {"tf": 7.483314773547883}, "vanna.set_model": {"tf": 6.708203932499369}, "vanna.add_sql": {"tf": 9.219544457292887}, "vanna.add_ddl": {"tf": 7.681145747868608}, "vanna.add_documentation": {"tf": 7.681145747868608}, "vanna.TrainingPlanItem": {"tf": 1.7320508075688772}, "vanna.TrainingPlanItem.__init__": {"tf": 1.7320508075688772}, "vanna.TrainingPlanItem.item_type": {"tf": 1.7320508075688772}, "vanna.TrainingPlanItem.item_group": {"tf": 1.7320508075688772}, "vanna.TrainingPlanItem.item_name": {"tf": 1.7320508075688772}, "vanna.TrainingPlanItem.item_value": {"tf": 1.7320508075688772}, "vanna.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1.7320508075688772}, "vanna.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1.7320508075688772}, "vanna.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1.7320508075688772}, "vanna.TrainingPlan": {"tf": 6.48074069840786}, "vanna.TrainingPlan.__init__": {"tf": 1.7320508075688772}, "vanna.TrainingPlan.get_summary": {"tf": 7.14142842854285}, "vanna.TrainingPlan.remove_item": {"tf": 7.745966692414834}, "vanna.get_training_plan_postgres": {"tf": 1.7320508075688772}, "vanna.get_training_plan_generic": {"tf": 1.7320508075688772}, "vanna.get_training_plan_experimental": {"tf": 9}, "vanna.train": {"tf": 9.16515138991168}, "vanna.flag_sql_for_review": {"tf": 8.426149773176359}, "vanna.remove_sql": {"tf": 6.928203230275509}, "vanna.remove_training_data": {"tf": 6.928203230275509}, "vanna.generate_sql": {"tf": 7.810249675906654}, "vanna.get_related_training_data": {"tf": 8}, "vanna.generate_meta": {"tf": 7.810249675906654}, "vanna.generate_followup_questions": {"tf": 8.831760866327848}, "vanna.generate_questions": {"tf": 6.4031242374328485}, "vanna.ask": {"tf": 11.532562594670797}, "vanna.generate_plotly_code": {"tf": 10.099504938362077}, "vanna.get_plotly_figure": {"tf": 9.486832980505138}, "vanna.get_results": {"tf": 6.082762530298219}, "vanna.generate_explanation": {"tf": 7.937253933193772}, "vanna.generate_question": {"tf": 7.937253933193772}, "vanna.get_all_questions": {"tf": 6.48074069840786}, "vanna.get_training_data": {"tf": 6.4031242374328485}, "vanna.connect_to_sqlite": {"tf": 4.795831523312719}, "vanna.connect_to_snowflake": {"tf": 11.224972160321824}, "vanna.connect_to_postgres": {"tf": 10.908712114635714}, "vanna.connect_to_bigquery": {"tf": 8.48528137423857}, "vanna.base": {"tf": 1.7320508075688772}, "vanna.base.base": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.config": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.run_sql_is_set": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.generate_sql": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.generate_questions": {"tf": 5.196152422706632}, "vanna.base.base.VannaBase.generate_embedding": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.get_similar_question_sql": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.get_related_ddl": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.get_related_documentation": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.add_question_sql": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.add_ddl": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.add_documentation": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.get_training_data": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.remove_training_data": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.get_sql_prompt": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.get_followup_questions_prompt": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.submit_prompt": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.generate_question": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_snowflake": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 4.795831523312719}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 10.723805294763608}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 8.246211251235321}, "vanna.base.base.VannaBase.run_sql": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.ask": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.train": {"tf": 8.48528137423857}, "vanna.base.base.VannaBase.get_training_plan_snowflake": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 9.486832980505138}, "vanna.base.base.SplitStorage": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.get_similar_question_sql": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.get_related_ddl": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.get_related_documentation": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.store_question_sql_embedding": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.store_ddl_embedding": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.store_documentation_embedding": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.get_similar_question_sql_ids": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.get_related_ddl_ids": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.get_related_documentation_ids": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.get_question_sql": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.get_documentation": {"tf": 1.7320508075688772}, "vanna.base.base.SplitStorage.get_ddl": {"tf": 1.7320508075688772}, "vanna.chromadb": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.default_ef": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.chroma_client": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.documentation_collection": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.ddl_collection": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.sql_collection": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.generate_embedding": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_question_sql": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_ddl": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.add_documentation": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_training_data": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.remove_training_data": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_similar_question_sql": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_ddl": {"tf": 1.7320508075688772}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore.get_related_documentation": {"tf": 1.7320508075688772}, "vanna.exceptions": {"tf": 1.7320508075688772}, "vanna.exceptions.ImproperlyConfigured": {"tf": 1.7320508075688772}, "vanna.exceptions.DependencyError": {"tf": 1.7320508075688772}, "vanna.exceptions.ConnectionError": {"tf": 1.4142135623730951}, "vanna.exceptions.OTPCodeError": {"tf": 1.4142135623730951}, "vanna.exceptions.SQLRemoveError": {"tf": 1.4142135623730951}, "vanna.exceptions.ExecutionError": {"tf": 1.4142135623730951}, "vanna.exceptions.ValidationError": {"tf": 1.4142135623730951}, "vanna.exceptions.APIError": {"tf": 1.4142135623730951}, "vanna.local": {"tf": 1.7320508075688772}, "vanna.local.LocalContext_OpenAI": {"tf": 1.7320508075688772}, "vanna.local.LocalContext_OpenAI.__init__": {"tf": 1.7320508075688772}, "vanna.openai": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.system_message": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.user_message": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.assistant_message": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.str_to_approx_token_count": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.add_ddl_to_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.add_documentation_to_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.add_sql_to_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.get_sql_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.get_followup_questions_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.generate_question": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.openai.openai_chat.OpenAI_Chat.submit_prompt": {"tf": 1.7320508075688772}, "vanna.openai.openai_embeddings": {"tf": 1.7320508075688772}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1.7320508075688772}, "vanna.openai.openai_embeddings.OpenAI_Embeddings.generate_embedding": {"tf": 1.7320508075688772}, "vanna.remote": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.__init__": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.get_training_data": {"tf": 6.4031242374328485}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 6.928203230275509}, "vanna.remote.VannaDefault.generate_questions": {"tf": 6.4031242374328485}, "vanna.remote.VannaDefault.add_ddl": {"tf": 7.681145747868608}, "vanna.remote.VannaDefault.add_documentation": {"tf": 7.681145747868608}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 9.219544457292887}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 10.295630140987}, "vanna.remote.VannaDefault.generate_question": {"tf": 7.937253933193772}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_sql": {"tf": 7.810249675906654}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 8.831760866327848}, "vanna.types": {"tf": 1.7320508075688772}, "vanna.types.Status": {"tf": 1.7320508075688772}, "vanna.types.Status.__init__": {"tf": 1.7320508075688772}, "vanna.types.Status.success": {"tf": 1.7320508075688772}, "vanna.types.Status.message": {"tf": 1.7320508075688772}, "vanna.types.StatusWithId": {"tf": 1.7320508075688772}, "vanna.types.StatusWithId.__init__": {"tf": 1.7320508075688772}, "vanna.types.StatusWithId.success": {"tf": 1.7320508075688772}, "vanna.types.StatusWithId.message": {"tf": 1.7320508075688772}, "vanna.types.StatusWithId.id": {"tf": 1.7320508075688772}, "vanna.types.QuestionList": {"tf": 1.7320508075688772}, "vanna.types.QuestionList.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionList.questions": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.__init__": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.id": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.question": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.answer": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.data": {"tf": 1.7320508075688772}, "vanna.types.FullQuestionDocument.plotly": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.sql": {"tf": 1.7320508075688772}, "vanna.types.QuestionSQLPair.tag": {"tf": 1.7320508075688772}, "vanna.types.Organization": {"tf": 1.7320508075688772}, "vanna.types.Organization.__init__": {"tf": 1.7320508075688772}, "vanna.types.Organization.name": {"tf": 1.7320508075688772}, "vanna.types.Organization.user": {"tf": 1.7320508075688772}, "vanna.types.Organization.connection": {"tf": 1.7320508075688772}, "vanna.types.OrganizationList": {"tf": 1.7320508075688772}, "vanna.types.OrganizationList.__init__": {"tf": 1.7320508075688772}, "vanna.types.OrganizationList.organizations": {"tf": 1.7320508075688772}, "vanna.types.QuestionStringList": {"tf": 1.7320508075688772}, "vanna.types.QuestionStringList.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionStringList.questions": {"tf": 1.7320508075688772}, "vanna.types.Visibility": {"tf": 1.7320508075688772}, "vanna.types.Visibility.__init__": {"tf": 1.7320508075688772}, "vanna.types.Visibility.visibility": {"tf": 1.7320508075688772}, "vanna.types.UserEmail": {"tf": 1.7320508075688772}, "vanna.types.UserEmail.__init__": {"tf": 1.7320508075688772}, "vanna.types.UserEmail.email": {"tf": 1.7320508075688772}, "vanna.types.NewOrganization": {"tf": 1.7320508075688772}, "vanna.types.NewOrganization.__init__": {"tf": 1.7320508075688772}, "vanna.types.NewOrganization.org_name": {"tf": 1.7320508075688772}, "vanna.types.NewOrganization.db_type": {"tf": 1.7320508075688772}, "vanna.types.NewOrganizationMember": {"tf": 1.7320508075688772}, "vanna.types.NewOrganizationMember.__init__": {"tf": 1.7320508075688772}, "vanna.types.NewOrganizationMember.org_name": {"tf": 1.7320508075688772}, "vanna.types.NewOrganizationMember.email": {"tf": 1.7320508075688772}, "vanna.types.NewOrganizationMember.is_admin": {"tf": 1.7320508075688772}, "vanna.types.UserOTP": {"tf": 1.7320508075688772}, "vanna.types.UserOTP.__init__": {"tf": 1.7320508075688772}, "vanna.types.UserOTP.email": {"tf": 1.7320508075688772}, "vanna.types.UserOTP.otp": {"tf": 1.7320508075688772}, "vanna.types.ApiKey": {"tf": 1.7320508075688772}, "vanna.types.ApiKey.__init__": {"tf": 1.7320508075688772}, "vanna.types.ApiKey.key": {"tf": 1.7320508075688772}, "vanna.types.QuestionId": {"tf": 1.7320508075688772}, "vanna.types.QuestionId.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionId.id": {"tf": 1.7320508075688772}, "vanna.types.Question": {"tf": 1.7320508075688772}, "vanna.types.Question.__init__": {"tf": 1.7320508075688772}, "vanna.types.Question.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.category": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.NO_SQL_GENERATED": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.SQL_UNABLE_TO_RUN": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.BOOTSTRAP_TRAINING_QUERY": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.SQL_RAN": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.FLAGGED_FOR_REVIEW": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.REVIEWED_AND_APPROVED": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.REVIEWED_AND_REJECTED": {"tf": 1.7320508075688772}, "vanna.types.QuestionCategory.REVIEWED_AND_UPDATED": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats.__init__": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats.num_questions": {"tf": 1.7320508075688772}, "vanna.types.AccuracyStats.data": {"tf": 1.7320508075688772}, "vanna.types.Followup": {"tf": 1.7320508075688772}, "vanna.types.Followup.__init__": {"tf": 1.7320508075688772}, "vanna.types.Followup.followup": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding.__init__": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding.question": {"tf": 1.7320508075688772}, "vanna.types.QuestionEmbedding.embedding": {"tf": 1.7320508075688772}, "vanna.types.Connection": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.__init__": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.raw_answer": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.prefix": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.postfix": {"tf": 1.7320508075688772}, "vanna.types.SQLAnswer.sql": {"tf": 1.7320508075688772}, "vanna.types.Explanation": {"tf": 1.7320508075688772}, "vanna.types.Explanation.__init__": {"tf": 1.7320508075688772}, "vanna.types.Explanation.explanation": {"tf": 1.7320508075688772}, "vanna.types.DataResult": {"tf": 1.7320508075688772}, "vanna.types.DataResult.__init__": {"tf": 1.7320508075688772}, "vanna.types.DataResult.question": {"tf": 1.7320508075688772}, "vanna.types.DataResult.sql": {"tf": 1.7320508075688772}, "vanna.types.DataResult.table_markdown": {"tf": 1.7320508075688772}, "vanna.types.DataResult.error": {"tf": 1.7320508075688772}, "vanna.types.DataResult.correction_attempts": {"tf": 1.7320508075688772}, "vanna.types.PlotlyResult": {"tf": 1.7320508075688772}, "vanna.types.PlotlyResult.__init__": {"tf": 1.7320508075688772}, "vanna.types.PlotlyResult.plotly_code": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition.name": {"tf": 1.7320508075688772}, "vanna.types.WarehouseDefinition.tables": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.schema_name": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.table_name": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.ddl": {"tf": 1.7320508075688772}, "vanna.types.TableDefinition.columns": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.__init__": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.name": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.type": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.is_primary_key": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.is_foreign_key": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.foreign_key_table": {"tf": 1.7320508075688772}, "vanna.types.ColumnDefinition.foreign_key_column": {"tf": 1.7320508075688772}, "vanna.types.Diagram": {"tf": 1.7320508075688772}, "vanna.types.Diagram.__init__": {"tf": 1.7320508075688772}, "vanna.types.Diagram.raw": {"tf": 1.7320508075688772}, "vanna.types.Diagram.mermaid_code": {"tf": 1.7320508075688772}, "vanna.types.StringData": {"tf": 1.7320508075688772}, "vanna.types.StringData.__init__": {"tf": 1.7320508075688772}, "vanna.types.StringData.data": {"tf": 1.7320508075688772}, "vanna.types.DataFrameJSON": {"tf": 1.7320508075688772}, "vanna.types.DataFrameJSON.__init__": {"tf": 1.7320508075688772}, "vanna.types.DataFrameJSON.data": {"tf": 1.7320508075688772}, "vanna.types.TrainingData": {"tf": 1.7320508075688772}, "vanna.types.TrainingData.__init__": {"tf": 1.7320508075688772}, "vanna.types.TrainingData.questions": {"tf": 1.7320508075688772}, "vanna.types.TrainingData.ddl": {"tf": 1.7320508075688772}, "vanna.types.TrainingData.documentation": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlanItem": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlanItem.__init__": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlanItem.item_type": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlanItem.item_group": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlanItem.item_name": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlanItem.item_value": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlanItem.ITEM_TYPE_SQL": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlanItem.ITEM_TYPE_DDL": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlanItem.ITEM_TYPE_IS": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan": {"tf": 6.48074069840786}, "vanna.types.TrainingPlan.__init__": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan.get_summary": {"tf": 7.14142842854285}, "vanna.types.TrainingPlan.remove_item": {"tf": 7.745966692414834}, "vanna.utils": {"tf": 1.7320508075688772}, "vanna.utils.validate_config_path": {"tf": 1.7320508075688772}, "vanna.utils.sanitize_model_name": {"tf": 1.7320508075688772}}, "df": 318, "s": {"docs": {"vanna": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1.4142135623730951}, "vanna.TrainingPlan": {"tf": 1}, "vanna.train": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 12, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}}, "df": 3}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 2}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2.6457513110645907}, "vanna.run_sql": {"tf": 1.4142135623730951}, "vanna.set_api_key": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.set_model": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 13, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}, "vanna.run_sql": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"vanna": {"tf": 1}, "vanna.set_api_key": {"tf": 1}}, "df": 2}}, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.TrainingPlan": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 5}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}}, "df": 11, "s": {"docs": {"vanna.generate_explanation": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 7, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_api_key": {"tf": 1}}, "df": 1}, "d": {"docs": {"vanna.exceptions.OTPCodeError": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.add_documentation": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1.4142135623730951}, "vanna.add_ddl": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.generate_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 21}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"vanna": {"tf": 4.123105625617661}, "vanna.run_sql": {"tf": 2.23606797749979}, "vanna.add_sql": {"tf": 2.8284271247461903}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.train": {"tf": 3.3166247903554}, "vanna.flag_sql_for_review": {"tf": 2.23606797749979}, "vanna.remove_sql": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 2}, "vanna.ask": {"tf": 2.8284271247461903}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 2.23606797749979}, "vanna.generate_explanation": {"tf": 2}, "vanna.generate_question": {"tf": 2}, "vanna.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 2.449489742783178}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 2.8284271247461903}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_question": {"tf": 2}, "vanna.remote.VannaDefault.generate_sql": {"tf": 2}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 27, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.add_ddl": {"tf": 1.7320508075688772}, "vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"vanna": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}}, "df": 7}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.add_sql": {"tf": 1.4142135623730951}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.4142135623730951}}, "df": 7, "d": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {"vanna.get_api_key": {"tf": 1.4142135623730951}, "vanna.set_api_key": {"tf": 1}, "vanna.create_model": {"tf": 1.4142135623730951}, "vanna.add_user_to_model": {"tf": 1.4142135623730951}, "vanna.set_model": {"tf": 1}, "vanna.add_sql": {"tf": 1.4142135623730951}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.train": {"tf": 2.449489742783178}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1.4142135623730951}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 2}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 2}, "vanna.connect_to_postgres": {"tf": 2}, "vanna.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 2}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 2}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 41, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.add_documentation": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}}, "df": 2, "s": {"docs": {"vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}}, "df": 3}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.run_sql": {"tf": 1.4142135623730951}, "vanna.create_model": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 2.6457513110645907}}, "df": 6}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}}, "df": 7}}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.TrainingPlan": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 7}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}}, "df": 2}}}, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2.449489742783178}, "vanna.get_api_key": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 2.449489742783178}, "vanna.get_plotly_figure": {"tf": 2}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 2}, "vanna.exceptions.ExecutionError": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2.449489742783178}}, "df": 7, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {"vanna": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.run_sql": {"tf": 1.4142135623730951}, "vanna.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.connect_to_postgres": {"tf": 1.7320508075688772}, "vanna.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_results": {"tf": 1}, "vanna.exceptions.ConnectionError": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 5}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.exceptions.ImproperlyConfigured": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 6}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna.generate_explanation": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 2.23606797749979}}, "df": 1}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "b": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 2.23606797749979}, "vanna.run_sql": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.TrainingPlan": {"tf": 1}, "vanna.train": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 10}, "l": {"docs": {}, "df": 0, "l": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.train": {"tf": 2}, "vanna.base.base.VannaBase.train": {"tf": 2}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.create_model": {"tf": 1.7320508075688772}, "vanna.add_ddl": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}}, "df": 11, "d": {"docs": {"vanna.create_model": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"vanna.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 2}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 10}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_bigquery": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.update_model_visibility": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.update_model_visibility": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 4.898979485566356}, "vanna.run_sql": {"tf": 1.7320508075688772}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.train": {"tf": 2.449489742783178}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 33, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna.exceptions.ValidationError": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"vanna": {"tf": 6.082762530298219}, "vanna.run_sql": {"tf": 1.7320508075688772}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1.4142135623730951}, "vanna.get_models": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.add_sql": {"tf": 1.4142135623730951}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 56}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"vanna.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 2, "h": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 4.47213595499958}, "vanna.run_sql": {"tf": 1.4142135623730951}, "vanna.get_api_key": {"tf": 2.23606797749979}, "vanna.set_api_key": {"tf": 1.4142135623730951}, "vanna.get_models": {"tf": 1.4142135623730951}, "vanna.create_model": {"tf": 2.23606797749979}, "vanna.add_user_to_model": {"tf": 2.6457513110645907}, "vanna.update_model_visibility": {"tf": 2.23606797749979}, "vanna.set_model": {"tf": 2}, "vanna.add_sql": {"tf": 2.6457513110645907}, "vanna.add_ddl": {"tf": 1.7320508075688772}, "vanna.add_documentation": {"tf": 2.23606797749979}, "vanna.TrainingPlan.get_summary": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.remove_item": {"tf": 1.7320508075688772}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 3.3166247903554}, "vanna.flag_sql_for_review": {"tf": 2.449489742783178}, "vanna.remove_sql": {"tf": 1.7320508075688772}, "vanna.remove_training_data": {"tf": 1.7320508075688772}, "vanna.generate_sql": {"tf": 2}, "vanna.get_related_training_data": {"tf": 2}, "vanna.generate_meta": {"tf": 2.6457513110645907}, "vanna.generate_followup_questions": {"tf": 3}, "vanna.generate_questions": {"tf": 2}, "vanna.ask": {"tf": 3.7416573867739413}, "vanna.generate_plotly_code": {"tf": 2.6457513110645907}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 2.6457513110645907}, "vanna.generate_explanation": {"tf": 2.23606797749979}, "vanna.generate_question": {"tf": 2.23606797749979}, "vanna.get_all_questions": {"tf": 1.4142135623730951}, "vanna.get_training_data": {"tf": 1.7320508075688772}, "vanna.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.connect_to_snowflake": {"tf": 2.449489742783178}, "vanna.connect_to_postgres": {"tf": 2.449489742783178}, "vanna.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 2.449489742783178}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.train": {"tf": 3}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_questions": {"tf": 2}, "vanna.remote.VannaDefault.add_ddl": {"tf": 2}, "vanna.remote.VannaDefault.add_documentation": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 2.8284271247461903}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2.6457513110645907}, "vanna.remote.VannaDefault.generate_question": {"tf": 2.23606797749979}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 2}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 3}, "vanna.types.TrainingPlan.get_summary": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan.remove_item": {"tf": 1.7320508075688772}}, "df": 60, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 15}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"vanna.run_sql": {"tf": 1.7320508075688772}, "vanna.create_model": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 15}}}, "o": {"docs": {"vanna": {"tf": 3.1622776601683795}, "vanna.run_sql": {"tf": 2}, "vanna.get_api_key": {"tf": 2}, "vanna.create_model": {"tf": 1.4142135623730951}, "vanna.add_user_to_model": {"tf": 2.23606797749979}, "vanna.set_model": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 2.449489742783178}, "vanna.add_ddl": {"tf": 1.4142135623730951}, "vanna.add_documentation": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.train": {"tf": 3.1622776601683795}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1.4142135623730951}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 2.6457513110645907}, "vanna.generate_plotly_code": {"tf": 2}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 2}, "vanna.connect_to_snowflake": {"tf": 2.449489742783178}, "vanna.connect_to_postgres": {"tf": 1.7320508075688772}, "vanna.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 2}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.train": {"tf": 3}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 52, "p": {"docs": {"vanna": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 3}, "vanna.add_sql": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 2.8284271247461903}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 2.6457513110645907}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 9, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 2.23606797749979}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.get_summary": {"tf": 1.7320508075688772}, "vanna.TrainingPlan.remove_item": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 2}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1.7320508075688772}, "vanna.get_related_training_data": {"tf": 2.23606797749979}, "vanna.get_training_data": {"tf": 2}, "vanna.base.base.VannaBase.train": {"tf": 2}, "vanna.remote.VannaDefault.get_training_data": {"tf": 2}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan.get_summary": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan.remove_item": {"tf": 1.4142135623730951}}, "df": 22, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.train": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.train": {"tf": 1.7320508075688772}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.get_related_training_data": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.ask": {"tf": 1}}, "df": 8}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"vanna.create_model": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}}, "df": 4, "s": {"docs": {"vanna.generate_meta": {"tf": 1.4142135623730951}}, "df": 1}}}}, "g": {"docs": {"vanna.add_sql": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.4142135623730951}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 2.6457513110645907}, "vanna.base.base.VannaBase.train": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 13, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}}, "df": 3}}}, "f": {"docs": {"vanna": {"tf": 2.449489742783178}, "vanna.run_sql": {"tf": 1}, "vanna.get_models": {"tf": 1.4142135623730951}, "vanna.create_model": {"tf": 1.4142135623730951}, "vanna.add_user_to_model": {"tf": 1.4142135623730951}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.set_model": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_documentation": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.get_summary": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.train": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.generate_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1.4142135623730951}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan.get_summary": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 41}, "u": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"vanna": {"tf": 2}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.train": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.get_related_training_data": {"tf": 1.4142135623730951}, "vanna.generate_meta": {"tf": 1.4142135623730951}, "vanna.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.generate_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 2.8284271247461903}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_all_questions": {"tf": 1.4142135623730951}, "vanna.get_training_data": {"tf": 1.4142135623730951}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.4142135623730951}}, "df": 23, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}}, "df": 3}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {"vanna": {"tf": 2.449489742783178}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}}, "df": 7}}}}}}}, "p": {"docs": {"vanna.get_api_key": {"tf": 1.7320508075688772}, "vanna.exceptions.OTPCodeError": {"tf": 1}}, "df": 2}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"vanna.ask": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 2}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 17}}}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 3}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.get_summary": {"tf": 1.7320508075688772}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.get_related_training_data": {"tf": 1.7320508075688772}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_all_questions": {"tf": 1.4142135623730951}, "vanna.get_training_data": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan.get_summary": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 3.605551275463989}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.generate_meta": {"tf": 1.7320508075688772}, "vanna.generate_followup_questions": {"tf": 2}, "vanna.generate_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 2.23606797749979}, "vanna.generate_explanation": {"tf": 1.7320508075688772}, "vanna.generate_question": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2.23606797749979}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 2}}, "df": 15, "s": {"docs": {"vanna": {"tf": 1}, "vanna.ask": {"tf": 1}}, "df": 2}, "d": {"docs": {"vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"vanna.ask": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "s": {"docs": {"vanna.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.7320508075688772}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.get_results": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}}, "df": 15}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_postgres": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.7320508075688772}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.remote.VannaDefault.submit_prompt": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {"vanna": {"tf": 3.3166247903554}, "vanna.get_models": {"tf": 1.4142135623730951}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.add_sql": {"tf": 1.4142135623730951}, "vanna.add_ddl": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.get_summary": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 2.6457513110645907}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.ask": {"tf": 2.23606797749979}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_all_questions": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 2}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan.get_summary": {"tf": 1.4142135623730951}}, "df": 42, "i": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.run_sql": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 23, "/": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"vanna": {"tf": 2}, "vanna.get_api_key": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1.4142135623730951}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1.4142135623730951}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 2.23606797749979}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 2}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 31, "d": {"docs": {"vanna": {"tf": 3.1622776601683795}, "vanna.add_sql": {"tf": 1.7320508075688772}, "vanna.TrainingPlan": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.remove_sql": {"tf": 1}, "vanna.ask": {"tf": 2}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 14}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.create_model": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.update_model_visibility": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.generate_meta": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"vanna.generate_meta": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"vanna": {"tf": 3}, "vanna.get_api_key": {"tf": 1.7320508075688772}, "vanna.set_api_key": {"tf": 2.449489742783178}, "vanna.set_model": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.exceptions.APIError": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 20}}, "s": {"docs": {"vanna": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 9, "k": {"docs": {"vanna": {"tf": 2.23606797749979}, "vanna.run_sql": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 2}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 2}, "vanna.generate_meta": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}}, "df": 8}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.train": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.train": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.train": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 42}}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 3.605551275463989}, "vanna.add_user_to_model": {"tf": 2}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.train": {"tf": 2.449489742783178}, "vanna.base.base.VannaBase.train": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 10, "s": {"docs": {"vanna": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 7}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_api_key": {"tf": 1.4142135623730951}, "vanna.add_user_to_model": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.add_user_to_model": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}}, "df": 2}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}}, "df": 8}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 16}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"vanna.generate_meta": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}}, "df": 7}, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"vanna.run_sql": {"tf": 1}, "vanna.train": {"tf": 1}}, "df": 2}}, "l": {"docs": {"vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"vanna.train": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_snowflake": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "e": {"docs": {"vanna": {"tf": 2.23606797749979}}, "df": 1, "d": {"docs": {"vanna": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"vanna.train": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 4}}, "y": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}}, "df": 3}, "e": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.ask": {"tf": 1.4142135623730951}}, "df": 5}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1.4142135623730951}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.ask": {"tf": 1.7320508075688772}}, "df": 8}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 26}}}, "e": {"docs": {"vanna": {"tf": 2}, "vanna.run_sql": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.set_model": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.7320508075688772}, "vanna.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 10, "r": {"docs": {"vanna": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.add_user_to_model": {"tf": 2.449489742783178}, "vanna.connect_to_postgres": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.7320508075688772}}, "df": 5, "@": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.add_user_to_model": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_snowflake": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"vanna.run_sql": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 2}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 2}}, "df": 4, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.update_model_visibility": {"tf": 1}}, "df": 2, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 4}}}}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {"vanna.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1.4142135623730951}}, "df": 2}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 2.6457513110645907}, "vanna.get_api_key": {"tf": 1.4142135623730951}, "vanna.set_api_key": {"tf": 2.6457513110645907}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "s": {"docs": {"vanna": {"tf": 2.6457513110645907}, "vanna.run_sql": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1.4142135623730951}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.generate_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 36}, "d": {"docs": {"vanna": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.remove_training_data": {"tf": 1.7320508075688772}, "vanna.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 9}, "n": {"docs": {"vanna": {"tf": 2}, "vanna.run_sql": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_meta": {"tf": 1.4142135623730951}, "vanna.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 10, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.add_ddl": {"tf": 1.4142135623730951}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1.4142135623730951}}, "df": 5}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}, "vanna.generate_meta": {"tf": 1}}, "df": 2}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"vanna.run_sql": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.get_results": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.ask": {"tf": 1}, "vanna.exceptions.ImproperlyConfigured": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}}, "df": 7}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.exceptions.OTPCodeError": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.update_model_visibility": {"tf": 1.7320508075688772}, "vanna.TrainingPlan": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 3.1622776601683795}, "vanna.ask": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 3}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1.4142135623730951}}, "df": 8, "e": {"docs": {}, "df": 0, "m": {"docs": {"vanna": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 2}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 2}}, "df": 5, "s": {"docs": {"vanna.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 6}}, "f": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_api_key": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1.7320508075688772}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.train": {"tf": 2.23606797749979}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 2.6457513110645907}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 2.23606797749979}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 28}}, "m": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.set_model": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 2}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"vanna": {"tf": 4.123105625617661}, "vanna.get_models": {"tf": 1}, "vanna.create_model": {"tf": 2.8284271247461903}, "vanna.add_user_to_model": {"tf": 2.449489742783178}, "vanna.update_model_visibility": {"tf": 2.449489742783178}, "vanna.set_model": {"tf": 2}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 18, "s": {"docs": {"vanna": {"tf": 1}, "vanna.get_models": {"tf": 1.7320508075688772}, "vanna.set_model": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 10}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "y": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}}, "df": 3}}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_models": {"tf": 1}}, "df": 2, "s": {"docs": {"vanna": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {"vanna.generate_meta": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 5}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.exceptions.DependencyError": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_api_key": {"tf": 2}, "vanna.set_api_key": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1.7320508075688772}}, "df": 3, "@": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}}, "df": 3}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1.4142135623730951}, "vanna.add_ddl": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.generate_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 20}}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.run_sql": {"tf": 1}, "vanna.get_api_key": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 53, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 2}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1.7320508075688772}, "vanna.train": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_results": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1.7320508075688772}}, "df": 1}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"vanna.run_sql": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.generate_followup_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.create_model": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.train": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.train": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 2}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 18, "s": {"docs": {"vanna.exceptions.APIError": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 2.23606797749979}, "vanna.add_sql": {"tf": 2.449489742783178}, "vanna.train": {"tf": 1.7320508075688772}, "vanna.flag_sql_for_review": {"tf": 2.23606797749979}, "vanna.remove_sql": {"tf": 2}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.get_related_training_data": {"tf": 2}, "vanna.generate_meta": {"tf": 1.7320508075688772}, "vanna.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.ask": {"tf": 2.23606797749979}, "vanna.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.generate_question": {"tf": 2}, "vanna.base.base.VannaBase.train": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_question": {"tf": 2}, "vanna.remote.VannaDefault.generate_sql": {"tf": 2}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.7320508075688772}}, "df": 18, "s": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.generate_followup_questions": {"tf": 2.23606797749979}, "vanna.generate_questions": {"tf": 1.7320508075688772}, "vanna.ask": {"tf": 2}, "vanna.get_all_questions": {"tf": 2}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 2.23606797749979}}, "df": 11}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.add_sql": {"tf": 2}, "vanna.train": {"tf": 1.4142135623730951}, "vanna.flag_sql_for_review": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.7320508075688772}, "vanna.ask": {"tf": 2.23606797749979}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_results": {"tf": 1.7320508075688772}, "vanna.generate_explanation": {"tf": 1.7320508075688772}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 2}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.7320508075688772}}, "df": 15}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.train": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_api_key": {"tf": 1.4142135623730951}, "vanna.set_api_key": {"tf": 1.4142135623730951}, "vanna.create_model": {"tf": 2}, "vanna.add_user_to_model": {"tf": 2}, "vanna.set_model": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 2}, "vanna.add_ddl": {"tf": 1.4142135623730951}, "vanna.add_documentation": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.remove_item": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 2}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.remove_sql": {"tf": 1.4142135623730951}, "vanna.remove_training_data": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.get_related_training_data": {"tf": 1.4142135623730951}, "vanna.generate_meta": {"tf": 1.4142135623730951}, "vanna.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 2.8284271247461903}, "vanna.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.connect_to_snowflake": {"tf": 3.1622776601683795}, "vanna.connect_to_postgres": {"tf": 2.8284271247461903}, "vanna.connect_to_bigquery": {"tf": 2}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 2.8284271247461903}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 2}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 2}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2.8284271247461903}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan.remove_item": {"tf": 1.4142135623730951}}, "df": 37}}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.generate_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 22}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}}, "df": 4}}, "n": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.ask": {"tf": 1.7320508075688772}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"vanna": {"tf": 1}, "vanna.get_api_key": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1}, "vanna.train": {"tf": 2.23606797749979}, "vanna.base.base.VannaBase.train": {"tf": 2.23606797749979}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.train": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.train": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 3}}, "s": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}}, "df": 5}, "y": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 9}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 2}, "vanna.run_sql": {"tf": 1}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.connect_to_bigquery": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.4142135623730951}}, "df": 10, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {"vanna": {"tf": 1}, "vanna.ask": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1}, "vanna.run_sql": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.TrainingPlan": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1.7320508075688772}, "vanna.remove_sql": {"tf": 1.7320508075688772}, "vanna.remove_training_data": {"tf": 1.7320508075688772}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1.7320508075688772}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1.7320508075688772}}, "df": 9, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 7}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_related_training_data": {"tf": 2}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 4}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1, "s": {"docs": {"vanna.get_api_key": {"tf": 1}, "vanna.get_models": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 36}, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 2}}}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.train": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"vanna.ask": {"tf": 2.23606797749979}, "vanna.get_results": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.flag_sql_for_review": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1.7320508075688772}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.exceptions.ImproperlyConfigured": {"tf": 1}, "vanna.exceptions.DependencyError": {"tf": 1}, "vanna.exceptions.ConnectionError": {"tf": 1}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}, "vanna.exceptions.ValidationError": {"tf": 1}, "vanna.exceptions.APIError": {"tf": 1}}, "df": 8}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna": {"tf": 2.23606797749979}, "vanna.ask": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 2.449489742783178}, "vanna.get_plotly_figure": {"tf": 2.8284271247461903}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 2.8284271247461903}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2.449489742783178}}, "df": 6}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"vanna.TrainingPlan": {"tf": 2}, "vanna.TrainingPlan.get_summary": {"tf": 2.23606797749979}, "vanna.TrainingPlan.remove_item": {"tf": 2}, "vanna.get_training_plan_experimental": {"tf": 2.23606797749979}, "vanna.train": {"tf": 2.23606797749979}, "vanna.base.base.VannaBase.train": {"tf": 2.23606797749979}, "vanna.types.TrainingPlan": {"tf": 2}, "vanna.types.TrainingPlan.get_summary": {"tf": 2.23606797749979}, "vanna.types.TrainingPlan.remove_item": {"tf": 2}}, "df": 9}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.ask": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.add_sql": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}, "vanna.base.base.VannaBase": {"tf": 1}, "vanna.base.base.SplitStorage": {"tf": 1}, "vanna.chromadb.chromadb_vector.ChromaDB_VectorStore": {"tf": 1}, "vanna.local.LocalContext_OpenAI": {"tf": 1}, "vanna.openai.openai_chat.OpenAI_Chat": {"tf": 1}, "vanna.openai.openai_embeddings.OpenAI_Embeddings": {"tf": 1}, "vanna.remote.VannaDefault": {"tf": 1}}, "df": 8}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}, "s": {"docs": {"vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}}, "df": 3}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.get_training_plan_experimental": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.update_model_visibility": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"vanna.run_sql": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.get_results": {"tf": 1}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 12}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.create_model": {"tf": 1.4142135623730951}, "vanna.connect_to_postgres": {"tf": 2.449489742783178}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 2.6457513110645907}}, "df": 3}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna.connect_to_postgres": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.7320508075688772}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"vanna.train": {"tf": 2}, "vanna.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.7320508075688772}}, "df": 3, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"vanna.connect_to_snowflake": {"tf": 1.7320508075688772}, "vanna.connect_to_postgres": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.7320508075688772}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 4}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"2": {"docs": {"vanna.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 5, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.ask": {"tf": 2}, "vanna.get_plotly_figure": {"tf": 2}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 2}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"vanna.train": {"tf": 2.449489742783178}, "vanna.connect_to_bigquery": {"tf": 1.7320508075688772}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1.7320508075688772}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"vanna.generate_followup_questions": {"tf": 2}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 2}}, "df": 3, "u": {"docs": {}, "df": 0, "p": {"docs": {"vanna": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}}, "df": 4, "s": {"docs": {"vanna.ask": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"vanna": {"tf": 1.7320508075688772}, "vanna.run_sql": {"tf": 1}, "vanna.set_api_key": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1.4142135623730951}, "vanna.generate_sql": {"tf": 1}, "vanna.get_related_training_data": {"tf": 1}, "vanna.generate_meta": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 2}, "vanna.generate_explanation": {"tf": 1}, "vanna.generate_question": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.exceptions.ImproperlyConfigured": {"tf": 1}, "vanna.exceptions.DependencyError": {"tf": 1}, "vanna.exceptions.ConnectionError": {"tf": 1}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.exceptions.ValidationError": {"tf": 1}, "vanna.exceptions.APIError": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.4142135623730951}}, "df": 33}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1}, "vanna.TrainingPlan.remove_item": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1}, "vanna.generate_sql": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_all_questions": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.4142135623730951}, "vanna.types.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan.remove_item": {"tf": 1}}, "df": 21}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1}, "vanna.run_sql": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 10, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna.get_training_plan_experimental": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"vanna.flag_sql_for_review": {"tf": 2.23606797749979}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.flag_sql_for_review": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.flag_sql_for_review": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {"vanna.train": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1}}, "df": 2, "t": {"docs": {"vanna.add_user_to_model": {"tf": 1}, "vanna.update_model_visibility": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1}, "vanna.exceptions.OTPCodeError": {"tf": 1}, "vanna.exceptions.SQLRemoveError": {"tf": 1}, "vanna.exceptions.ExecutionError": {"tf": 1}, "vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 13, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"vanna": {"tf": 1}}, "df": 1, "e": {"docs": {"vanna.get_api_key": {"tf": 1.4142135623730951}, "vanna.add_sql": {"tf": 1}, "vanna.generate_sql": {"tf": 1.4142135623730951}, "vanna.get_related_training_data": {"tf": 1.4142135623730951}, "vanna.generate_meta": {"tf": 1.4142135623730951}, "vanna.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.generate_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 3}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.get_all_questions": {"tf": 1.4142135623730951}, "vanna.get_training_data": {"tf": 1.4142135623730951}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_sql": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.4142135623730951}}, "df": 23}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.add_user_to_model": {"tf": 1}, "vanna.set_model": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1.4142135623730951}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1.4142135623730951}}, "df": 16, "s": {"docs": {"vanna.get_models": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"vanna.create_model": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"vanna.remote.VannaDefault.generate_embedding": {"tf": 1}, "vanna.remote.VannaDefault.get_sql_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_followup_questions_prompt": {"tf": 1}, "vanna.remote.VannaDefault.submit_prompt": {"tf": 1}, "vanna.remote.VannaDefault.get_similar_question_sql": {"tf": 1}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 7}}}}}}}}}, "y": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "u": {"docs": {"vanna": {"tf": 2.8284271247461903}, "vanna.run_sql": {"tf": 1}, "vanna.TrainingPlan": {"tf": 1.4142135623730951}, "vanna.train": {"tf": 2.449489742783178}, "vanna.flag_sql_for_review": {"tf": 1}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 2.449489742783178}, "vanna.types.TrainingPlan": {"tf": 1.4142135623730951}}, "df": 9, "r": {"docs": {"vanna": {"tf": 1.4142135623730951}}, "df": 1}}}}, "d": {"docs": {"vanna": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"vanna": {"tf": 2}, "vanna.add_sql": {"tf": 1}, "vanna.add_ddl": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remove_sql": {"tf": 1}, "vanna.remove_training_data": {"tf": 1.7320508075688772}, "vanna.get_related_training_data": {"tf": 2.23606797749979}, "vanna.get_training_data": {"tf": 2}, "vanna.remote.VannaDefault.get_training_data": {"tf": 2}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.add_ddl": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_question_sql": {"tf": 1}}, "df": 13, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}, "vanna.create_model": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}, "vanna.train": {"tf": 1.4142135623730951}, "vanna.generate_meta": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.connect_to_snowflake": {"tf": 1.7320508075688772}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {"vanna": {"tf": 1}, "vanna.get_training_plan_experimental": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.run_sql": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.ask": {"tf": 1.7320508075688772}, "vanna.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.get_all_questions": {"tf": 1}, "vanna.get_training_data": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1.7320508075688772}, "vanna.remote.VannaDefault.get_training_data": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.4142135623730951}}, "df": 12}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"vanna": {"tf": 2.8284271247461903}, "vanna.add_ddl": {"tf": 2.449489742783178}, "vanna.train": {"tf": 2.23606797749979}, "vanna.remove_training_data": {"tf": 1}, "vanna.base.base.VannaBase.train": {"tf": 2.23606797749979}, "vanna.remote.VannaDefault.remove_training_data": {"tf": 1}, "vanna.remote.VannaDefault.add_ddl": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.get_related_ddl": {"tf": 1}}, "df": 8}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 2.449489742783178}, "vanna.add_documentation": {"tf": 2.449489742783178}, "vanna.train": {"tf": 2.23606797749979}, "vanna.base.base.VannaBase.train": {"tf": 2.23606797749979}, "vanna.remote.VannaDefault.add_documentation": {"tf": 2.449489742783178}, "vanna.remote.VannaDefault.get_related_documentation": {"tf": 1}}, "df": 6}}}}}}}}}}}, "n": {"docs": {"vanna.TrainingPlan": {"tf": 1}, "vanna.types.TrainingPlan": {"tf": 1}}, "df": 2}, "e": {"docs": {"vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1.4142135623730951}, "vanna.get_results": {"tf": 1.4142135623730951}, "vanna.connect_to_snowflake": {"tf": 1}}, "df": 3, "s": {"docs": {"vanna.connect_to_snowflake": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna.generate_followup_questions": {"tf": 1.4142135623730951}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"vanna.get_results": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.exceptions.DependencyError": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"vanna": {"tf": 1}, "vanna.add_documentation": {"tf": 1}, "vanna.remote.VannaDefault.add_documentation": {"tf": 1}}, "df": 3}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"vanna.run_sql": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {"vanna.create_model": {"tf": 1.4142135623730951}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"vanna.connect_to_postgres": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "f": {"docs": {"vanna.generate_followup_questions": {"tf": 1.7320508075688772}, "vanna.ask": {"tf": 1.4142135623730951}, "vanna.generate_plotly_code": {"tf": 2}, "vanna.get_plotly_figure": {"tf": 2}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 2}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 2}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1.7320508075688772}}, "df": 7}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"vanna": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_models": {"tf": 1.4142135623730951}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.train": {"tf": 1}, "vanna.get_all_questions": {"tf": 1.4142135623730951}, "vanna.base.base.VannaBase.generate_questions": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 6, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"vanna.get_models": {"tf": 1}, "vanna.TrainingPlan.get_summary": {"tf": 1}, "vanna.generate_followup_questions": {"tf": 1}, "vanna.generate_questions": {"tf": 1}, "vanna.ask": {"tf": 1}, "vanna.remote.VannaDefault.generate_questions": {"tf": 1}, "vanna.remote.VannaDefault.generate_followup_questions": {"tf": 1}, "vanna.types.TrainingPlan.get_summary": {"tf": 1}}, "df": 8}}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"vanna.get_api_key": {"tf": 1.7320508075688772}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"vanna": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"vanna.run_sql": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"vanna.train": {"tf": 1.7320508075688772}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"vanna.get_results": {"tf": 1}, "vanna.connect_to_sqlite": {"tf": 1}, "vanna.connect_to_snowflake": {"tf": 1}, "vanna.connect_to_postgres": {"tf": 1}, "vanna.connect_to_bigquery": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_sqlite": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_postgres": {"tf": 1}, "vanna.base.base.VannaBase.connect_to_bigquery": {"tf": 1}}, "df": 8}}}, "o": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {"vanna.generate_explanation": {"tf": 1.4142135623730951}, "vanna.generate_question": {"tf": 1}, "vanna.remote.VannaDefault.generate_question": {"tf": 1}}, "df": 3}}}}, "x": {"docs": {"vanna.generate_plotly_code": {"tf": 1}, "vanna.get_plotly_figure": {"tf": 1}, "vanna.base.base.VannaBase.get_plotly_figure": {"tf": 1}, "vanna.remote.VannaDefault.generate_plotly_code": {"tf": 1}}, "df": 4}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + + // mirrored in build-search-index.js (part 1) + // Also split on html tags. this is a cheap heuristic, but good enough. + elasticlunr.tokenizer.setSeperator(/[\s\-.;&_'"=,()]+|<[^>]*>/); + + let searchIndex; + if (docs._isPrebuiltIndex) { + console.info("using precompiled search index"); + searchIndex = elasticlunr.Index.load(docs); + } else { + console.time("building search index"); + // mirrored in build-search-index.js (part 2) + searchIndex = elasticlunr(function () { + this.pipeline.remove(elasticlunr.stemmer); + this.pipeline.remove(elasticlunr.stopWordFilter); + this.addField("qualname"); + this.addField("fullname"); + this.addField("annotation"); + this.addField("default_value"); + this.addField("signature"); + this.addField("bases"); + this.addField("doc"); + this.setRef("fullname"); + }); + for (let doc of docs) { + searchIndex.addDoc(doc); + } + console.timeEnd("building search index"); + } + + return (term) => searchIndex.search(term, { + fields: { + qualname: {boost: 4}, + fullname: {boost: 2}, + annotation: {boost: 2}, + default_value: {boost: 2}, + signature: {boost: 2}, + bases: {boost: 2}, + doc: {boost: 1}, + }, + expand: true + }); +})(); \ No newline at end of file diff --git a/sidebar.py b/sidebar.py new file mode 100644 index 000000000..f6923a386 --- /dev/null +++ b/sidebar.py @@ -0,0 +1,130 @@ +import yaml +import sys +import nbformat +from nbconvert import HTMLExporter + +# Get the yaml file path from the command line +file_path = sys.argv[1] + +# Get the directory to search for the .ipynb files from the command line +notebook_dir = sys.argv[2] + +# Get the output directory from the command line +output_dir = sys.argv[3] + +def generate_html(sidebar_data, current_path: str): + html = '
    \n' + for entry in sidebar_data: + html += '
  • \n' + if 'sub_entries' in entry: + # Dropdown menu with sub-entries + html += f'\n' + html += f'\n' + else: + # Regular sidebar entry without sub-entries + highlighted = 'bg-indigo-100 dark:bg-indigo-700' if entry['link'] == current_path else '' + html += f'\n' + html += f'{entry["svg_text"]}\n' + html += f'{entry["title"]}\n' + html += '\n' + html += '
  • \n' + html += '
' + return html + +def generate_header(notebook_name: str) -> str: + return f""" + + + Run Using Colab + + + + Open in GitHub + +""" + +# Read YAML data from a file +def read_yaml_file(file_path): + with open(file_path, 'r') as file: + yaml_data = file.read() + return yaml_data + +yaml_data = read_yaml_file(file_path) + +# Parse YAML data +sidebar_data = yaml.safe_load(yaml_data) + +# Get a list of all .ipynb files in the directory +import os +notebook_files = [file for file in os.listdir(notebook_dir) if file.endswith('.ipynb')] + +def is_runnable(notebook_name: str, sidebar_data: dict) -> bool: + # Check if the notebook is runnable + for entry in sidebar_data: + if 'link' in entry: + if entry['link'] == f'{notebook_name}.html': + return entry.get('runnable', 'true') == 'true' + + if 'sub_entries' in entry: + for sub_entry in entry['sub_entries']: + if sub_entry['link'] == f'{notebook_name}.html': + return sub_entry.get('runnable', 'true') == 'true' + + return False + +def get_title_from_sidebar_data(notebook_name: str, sidebar_data: dict) -> str: + # Check if the notebook is runnable + for entry in sidebar_data: + if 'link' in entry: + if entry['link'] == f'{notebook_name}.html': + return entry['title'] + + if 'sub_entries' in entry: + for sub_entry in entry['sub_entries']: + if sub_entry['link'] == f'{notebook_name}.html': + return sub_entry['title'] + + return '' + +for notebook_file in notebook_files: + # Get just the file name without the extension + notebook_name = os.path.splitext(notebook_file)[0] + + # Get the full path to the notebook + notebook_file_path = os.path.join(notebook_dir, notebook_file) + + # Generate HTML code + html_code = generate_html(sidebar_data, f'{notebook_name}.html') + + # Read notebook file + current_notebook = nbformat.read(notebook_file_path, as_version=4) + + html_exporter = HTMLExporter(template_name='nb-theme') + + (body, resources) = html_exporter.from_notebook_node(current_notebook) + + notebook_title = get_title_from_sidebar_data(notebook_name, sidebar_data) + + # Write body to file + with open(os.path.join(output_dir, f'{notebook_name}.html'), 'w') as file: + # From sidebar_data, see if there is a matching entry for the current notebook + if is_runnable(notebook_name, sidebar_data): + file.write(body.replace('nb_title', f"Vanna Docs: {notebook_title}").replace('', html_code).replace('', generate_header(notebook_name))) + else: + file.write(body.replace('nb_title', f"Vanna Docs: {notebook_title}").replace('', html_code)) + + diff --git a/sidebar.yaml b/sidebar.yaml new file mode 100644 index 000000000..5c0a68642 --- /dev/null +++ b/sidebar.yaml @@ -0,0 +1,77 @@ +- title: How It Works + link: index.html + runnable: false + svg_text: |- + + +- title: Getting Started + link: getting-started.html + svg_text: |- + + +- title: Train Vanna + svg_text: |- + + sub_entries: + - title: Snowflake + link: vn-train.html + svg_text: |- + + + - title: Other Databases + link: manual-train.html + svg_text: |- + + +- title: User Interfaces + svg_text: |- + + sub_entries: + - title: Streamlit + link: streamlit.html + runnable: false + svg_text: |- + + + - title: Slack + link: slack.html + runnable: false + svg_text: |- + + +- title: Databases + link: databases.html + svg_text: |- + + +- title: Running Locally + link: local.html + svg_text: |- + + +- title: API Reference + link: vanna.html + svg_text: |- + diff --git a/slack.html b/slack.html new file mode 100644 index 000000000..a4d252b95 --- /dev/null +++ b/slack.html @@ -0,0 +1,7503 @@ + + + + + + + + + + + + + +Vanna Docs: Slack + + + + + + + + + + + + + + + + + + + + +
+ + + + + +
+ + diff --git a/streamlit.html b/streamlit.html new file mode 100644 index 000000000..100d11b47 --- /dev/null +++ b/streamlit.html @@ -0,0 +1,7481 @@ + + + + + + + + + + + + + +Vanna Docs: Streamlit + + + + + + + + + + + + + + + + + + + + +
+ + + +
+ + diff --git a/streamlit.md b/streamlit.md new file mode 100644 index 000000000..2b80b17a2 --- /dev/null +++ b/streamlit.md @@ -0,0 +1,13 @@ +# Use **Vanna.AI** with Streamlit + +## App + + +## Code +[https://github.com/vanna-ai/vanna-streamlit](https://github.com/vanna-ai/vanna-streamlit) + + \ No newline at end of file diff --git a/support.md b/support.md new file mode 100644 index 000000000..465992464 --- /dev/null +++ b/support.md @@ -0,0 +1,5 @@ +# Getting Support + +E-mail us at [support@vanna.ai](mailto:support@vanna.ai) + +[Join our Slack](https://join.slack.com/t/vanna-ai/shared_invite/zt-1unu0ipog-iE33QCoimQiBDxf2o7h97w) \ No newline at end of file diff --git a/vanna.html b/vanna.html new file mode 100644 index 000000000..36ce433c5 --- /dev/null +++ b/vanna.html @@ -0,0 +1,1969 @@ + + + + + + + vanna API documentation + + + + + + + + + + +
+
+

+vanna

+ +

Source Code

+ +

View the source code on GitHub: https://github.com/vanna-ai/vanna

+ +

Basic Usage

+ +

Getting an API key

+ +
+
import vanna as vn
+api_key = vn.get_api_key('my-email@example.com')
+vn.set_api_key(api_key)
+
+
+ +

Setting the model

+ +
+
vn.set_model('chinook')
+
+
+ +

Asking a question

+ +
+
vn.ask(question='What are the top 10 artists by sales?')
+
+
+ +

vn.ask(...) is a convenience wrapper around vn.generate_sql(...), vn.run_sql(...), vn.generate_plotly_code(...), vn.get_plotly_figure(...), and vn.generate_followup_questions(...).

+ +

For a runnable notebook where you can ask questions, see here

+ +

Training

+ +

There are 3 main types of training data that you can add to a model: SQL, DDL, and documentation.

+ +
+
# DDL Statements
+vn.train(ddl='CREATE TABLE employees (id INT, name VARCHAR(255), salary INT)')
+
+# Documentation
+vn.train(documentation='Our organization\'s definition of sales is the discount price of an item multiplied by the quantity sold.')
+
+# SQL
+vn.train(sql='SELECT AVG(salary) FROM employees')
+
+
+ +

vn.train(...) is a convenience wrapper around vn.add_sql(...), vn.add_ddl(...), and vn.add_documentation(...).

+ +

For a runnable notebook where you can train a model, see here

+ +

Nomenclature

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
PrefixDefinitionExamples
vn.set_Sets the variable for the current session[vn.set_model(...)][set_model]
[vn.set_api_key(...)][set_api_key]
vn.get_Performs a read-only operation[vn.get_model()][get_models]
vn.add_Adds something to the model[vn.add_sql(...)][add_sql]
[vn.add_ddl(...)][add_ddl]
vn.generate_Generates something using AI based on the information in the model[vn.generate_sql(...)][generate_sql]
[vn.generate_explanation()][generate_explanation]
vn.run_Runs code (SQL or Plotly)[vn.run_sql][run_sql]
vn.remove_Removes something from the model[vn.remove_training_data][remove_training_data]
vn.update_Updates something in the model[vn.update_model_visibility(...)][update_model_visibility]
vn.connect_Connects to a database[vn.connect_to_snowflake(...)][connect_to_snowflake]
+ +

Permissions

+ +

By default when you create a model it is private. You can add members or admins to your model or make it public.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
User RolePublic ModelPrivate Model
UseTrainUseTrain
Non-Member
Member
Admin
+ +

Open-Source and Extending

+ +

Vanna.AI is open-source and extensible. If you'd like to use Vanna without the servers, see an example here.

+ +

The following is an example of where various functions are implemented in the codebase when using the default "local" version of Vanna. vanna.base.VannaBase is the base class which provides a vanna.base.VannaBase.ask and vanna.base.VannaBase.train function. Those rely on abstract methods which are implemented in the subclasses vanna.openai_chat.OpenAI_Chat and vanna.chromadb_vector.ChromaDB_VectorStore. vanna.openai_chat.OpenAI_Chat uses the OpenAI API to generate SQL and Plotly code. vanna.chromadb_vector.ChromaDB_VectorStore uses ChromaDB to store training data and generate embeddings.

+ +

If you want to use Vanna with other LLMs or databases, you can create your own subclass of vanna.base.VannaBase and implement the abstract methods.

+ +
flowchart + subgraph VannaBase + ask + train + end + + subgraph OpenAI_Chat + get_sql_prompt + submit_prompt + generate_question + generate_plotly_code + end + + subgraph ChromaDB_VectorStore + generate_embedding + add_question_sql + add_ddl + add_documentation + get_similar_question_sql + get_related_ddl + get_related_documentation + end +
+ +

API Reference

+
+ + + + +
+
+
+ api_key: Optional[str] = +None + + +
+ + + + +
+
+
+ fig_as_img: bool = +False + + +
+ + + + +
+
+
+ run_sql: Optional[Callable[[str], pandas.core.frame.DataFrame]] = +None + + +
+ + +

Example

+ +
+
vn.run_sql = lambda sql: pd.read_sql(sql, engine)
+
+
+ +

Set the SQL to DataFrame function for Vanna.AI. This is used in the [vn.ask(...)][ask] function. +Instead of setting this directly you can also use [vn.connect_to_snowflake(...)][connect_to_snowflake] to set this.

+
+ + +
+
+
+ + def + get_api_key(email: str, otp_code: Optional[str] = None) -> str: + + +
+ + +

Example:

+ +
+
vn.get_api_key(email="my-email@example.com")
+
+
+ +

Login to the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • email (str): The email address to login with.
  • +
  • otp_code (Union[str, None]): The OTP code to login with. If None, an OTP code will be sent to the email address.
  • +
+ +
Returns:
+ +
+

str: The API key.

+
+
+ + +
+
+
+ + def + set_api_key(key: str) -> None: + + +
+ + +

Sets the API key for Vanna.AI.

+ +

Example:

+ +
+
api_key = vn.get_api_key(email="my-email@example.com")
+vn.set_api_key(api_key)
+
+
+ +
Arguments:
+ +
    +
  • key (str): The API key.
  • +
+
+ + +
+
+
+ + def + get_models() -> List[str]: + + +
+ + +

Example:

+ +
+
models = vn.get_models()
+
+
+ +

List the models that the user is a member of.

+ +
Returns:
+ +
+

List[str]: A list of model names.

+
+
+ + +
+
+
+ + def + create_model(model: str, db_type: str) -> bool: + + +
+ + +

Example:

+ +
+
vn.create_model(model="my-model", db_type="postgres")
+
+
+ +

Create a new model.

+ +
Arguments:
+ +
    +
  • model (str): The name of the model to create.
  • +
  • db_type (str): The type of database to use for the model. This can be "Snowflake", "BigQuery", "Postgres", or anything else.
  • +
+ +
Returns:
+ +
+

bool: True if the model was created successfully, False otherwise.

+
+
+ + +
+
+
+ + def + add_user_to_model(model: str, email: str, is_admin: bool) -> bool: + + +
+ + +

Example:

+ +
+
vn.add_user_to_model(model="my-model", email="user@example.com")
+
+
+ +

Add a user to an model.

+ +
Arguments:
+ +
    +
  • model (str): The name of the model to add the user to.
  • +
  • email (str): The email address of the user to add.
  • +
  • is_admin (bool): Whether or not the user should be an admin.
  • +
+ +
Returns:
+ +
+

bool: True if the user was added successfully, False otherwise.

+
+
+ + +
+
+
+ + def + update_model_visibility(public: bool) -> bool: + + +
+ + +

Example:

+ +
+
vn.update_model_visibility(public=True)
+
+
+ +

Set the visibility of the current model. If a model is visible, anyone can see it. If it is not visible, only members of the model can see it.

+ +
Arguments:
+ +
    +
  • public (bool): Whether or not the model should be publicly visible.
  • +
+ +
Returns:
+ +
+

bool: True if the model visibility was set successfully, False otherwise.

+
+
+ + +
+
+
+ + def + set_model(model: str): + + +
+ + +

Set the models to use for the Vanna.AI API.

+ +

Example:

+ +
+
vn.set_model("my-model")
+
+
+ +
Arguments:
+ +
    +
  • model (str): The name of the model to use.
  • +
+
+ + +
+
+
+ + def + add_sql(question: str, sql: str, tag: Optional[str] = 'Manually Trained') -> bool: + + +
+ + +

Adds a question and its corresponding SQL query to the model's training data. The preferred way to call this is to use [vn.train(sql=...)][train].

+ +

Example:

+ +
+
vn.add_sql(
+    question="What is the average salary of employees?",
+    sql="SELECT AVG(salary) FROM employees"
+)
+
+
+ +
Arguments:
+ +
    +
  • question (str): The question to store.
  • +
  • sql (str): The SQL query to store.
  • +
  • tag (Union[str, None]): A tag to associate with the question and SQL query.
  • +
+ +
Returns:
+ +
+

bool: True if the question and SQL query were stored successfully, False otherwise.

+
+
+ + +
+
+
+ + def + add_ddl(ddl: str) -> bool: + + +
+ + +

Adds a DDL statement to the model's training data

+ +

Example:

+ +
+
vn.add_ddl(
+    ddl="CREATE TABLE employees (id INT, name VARCHAR(255), salary INT)"
+)
+
+
+ +
Arguments:
+ +
    +
  • ddl (str): The DDL statement to store.
  • +
+ +
Returns:
+ +
+

bool: True if the DDL statement was stored successfully, False otherwise.

+
+
+ + +
+
+
+ + def + add_documentation(documentation: str) -> bool: + + +
+ + +

Adds documentation to the model's training data

+ +

Example:

+ +
+
vn.add_documentation(
+    documentation="Our organization's definition of sales is the discount price of an item multiplied by the quantity sold."
+)
+
+
+ +
Arguments:
+ +
    +
  • documentation (str): The documentation string to store.
  • +
+ +
Returns:
+ +
+

bool: True if the documentation string was stored successfully, False otherwise.

+
+
+ + +
+
+
+
@dataclass
+ + class + TrainingPlanItem: + + +
+ + + + +
+
+ + TrainingPlanItem(item_type: str, item_group: str, item_name: str, item_value: str) + + +
+ + + + +
+
+
+ item_type: str + + +
+ + + + +
+
+
+ item_group: str + + +
+ + + + +
+
+
+ item_name: str + + +
+ + + + +
+
+
+ item_value: str + + +
+ + + + +
+
+
+ ITEM_TYPE_SQL = +'sql' + + +
+ + + + +
+
+
+ ITEM_TYPE_DDL = +'ddl' + + +
+ + + + +
+
+
+ ITEM_TYPE_IS = +'is' + + +
+ + + + +
+
+
+
+ + class + TrainingPlan: + + +
+ + +

A class representing a training plan. You can see what's in it, and remove items from it that you don't want trained.

+ +

Example:

+ +
+
plan = vn.get_training_plan()
+
+plan.get_summary()
+
+
+
+ + +
+
+ + TrainingPlan(plan: List[TrainingPlanItem]) + + +
+ + + + +
+
+
+ + def + get_summary(self) -> List[str]: + + +
+ + +

Example:

+ +
+
plan = vn.get_training_plan()
+
+plan.get_summary()
+
+
+ +

Get a summary of the training plan.

+ +
Returns:
+ +
+

List[str]: A list of strings describing the training plan.

+
+
+ + +
+
+
+ + def + remove_item(self, item: str): + + +
+ + +

Example:

+ +
+
plan = vn.get_training_plan()
+
+plan.remove_item("Train on SQL: What is the average salary of employees?")
+
+
+ +

Remove an item from the training plan.

+ +
Arguments:
+ +
    +
  • item (str): The item to remove.
  • +
+
+ + +
+
+
+
+ + def + get_training_plan_postgres( filter_databases: Optional[List[str]] = None, filter_schemas: Optional[List[str]] = None, include_information_schema: bool = False, use_historical_queries: bool = True) -> TrainingPlan: + + +
+ + + + +
+
+
+ + def + get_training_plan_generic(df) -> TrainingPlan: + + +
+ + + + +
+
+
+ + def + get_training_plan_experimental( filter_databases: Optional[List[str]] = None, filter_schemas: Optional[List[str]] = None, include_information_schema: bool = False, use_historical_queries: bool = True) -> TrainingPlan: + + +
+ + +

EXPERIMENTAL : This method is experimental and may change in future versions.

+ +

Get a training plan based on the metadata in the database. Currently this only works for Snowflake.

+ +

Example:

+ +
+
plan = vn.get_training_plan_experimental(filter_databases=["employees"], filter_schemas=["public"])
+
+vn.train(plan=plan)
+
+
+
+ + +
+
+
+ + def + train( question: str = None, sql: str = None, ddl: str = None, documentation: str = None, json_file: str = None, sql_file: str = None, plan: TrainingPlan = None) -> bool: + + +
+ + +

Example:

+ +
+
vn.train()
+
+
+ +

Train Vanna.AI on a question and its corresponding SQL query. +If you call it with no arguments, it will check if you connected to a database and it will attempt to train on the metadata of that database. +If you call it with the sql argument, it's equivalent to [add_sql()][add_sql]. +If you call it with the ddl argument, it's equivalent to [add_ddl()][add_ddl]. +If you call it with the documentation argument, it's equivalent to [add_documentation()][add_documentation]. +It can also accept a JSON file path or SQL file path to train on a batch of questions and SQL queries or a list of SQL queries respectively. +Additionally, you can pass a [TrainingPlan][TrainingPlan] object. Get a training plan with [vn.get_training_plan_experimental()][get_training_plan_experimental].

+ +
Arguments:
+ +
    +
  • question (str): The question to train on.
  • +
  • sql (str): The SQL query to train on.
  • +
  • sql_file (str): The SQL file path.
  • +
  • json_file (str): The JSON file path.
  • +
  • ddl (str): The DDL statement.
  • +
  • documentation (str): The documentation to train on.
  • +
  • plan (TrainingPlan): The training plan to train on.
  • +
+
+ + +
+
+
+ + def + flag_sql_for_review( question: str, sql: Optional[str] = None, error_msg: Optional[str] = None) -> bool: + + +
+ + +

Example:

+ +
+
vn.flag_sql_for_review(question="What is the average salary of employees?")
+
+
+ +

Flag a question and its corresponding SQL query for review. You can see the tag show up in [vn.get_all_questions()][get_all_questions]

+ +
Arguments:
+ +
    +
  • question (str): The question to flag.
  • +
  • sql (str): The SQL query to flag.
  • +
  • error_msg (str): The error message to flag.
  • +
+ +
Returns:
+ +
+

bool: True if the question and SQL query were flagged successfully, False otherwise.

+
+
+ + +
+
+
+ + def + remove_sql(question: str) -> bool: + + +
+ + +

Remove a question and its corresponding SQL query from the model's training data

+ +

Example:

+ +
+
vn.remove_sql(question="What is the average salary of employees?")
+
+
+ +
Arguments:
+ +
    +
  • question (str): The question to remove.
  • +
+
+ + +
+
+
+ + def + remove_training_data(id: str) -> bool: + + +
+ + +

Remove training data from the model

+ +

Example:

+ +
+
vn.remove_training_data(id="1-ddl")
+
+
+ +
Arguments:
+ +
    +
  • id (str): The ID of the training data to remove.
  • +
+
+ + +
+
+
+ + def + generate_sql(question: str) -> str: + + +
+ + +

Example:

+ +
+
vn.generate_sql(question="What is the average salary of employees?")
+# SELECT AVG(salary) FROM employees
+
+
+ +

Generate an SQL query using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • question (str): The question to generate an SQL query for.
  • +
+ +
Returns:
+ +
+

str or None: The SQL query, or None if an error occurred.

+
+
+ + +
+ +
+
+ + def + generate_meta(question: str) -> str: + + +
+ + +

Example:

+ +
+
vn.generate_meta(question="What tables are in the database?")
+# Information about the tables in the database
+
+
+ +

Generate answers about the metadata of a database using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • question (str): The question to generate an answer for.
  • +
+ +
Returns:
+ +
+

str or None: The answer, or None if an error occurred.

+
+
+ + +
+
+
+ + def + generate_followup_questions(question: str, df: pandas.core.frame.DataFrame) -> List[str]: + + +
+ + +

Example:

+ +
+
vn.generate_followup_questions(question="What is the average salary of employees?", df=df)
+# ['What is the average salary of employees in the Sales department?', 'What is the average salary of employees in the Engineering department?', ...]
+
+
+ +

Generate follow-up questions using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • question (str): The question to generate follow-up questions for.
  • +
  • df (pd.DataFrame): The DataFrame to generate follow-up questions for.
  • +
+ +
Returns:
+ +
+

List[str] or None: The follow-up questions, or None if an error occurred.

+
+
+ + +
+
+
+ + def + generate_questions() -> List[str]: + + +
+ + +

Example:

+ +
+
vn.generate_questions()
+# ['What is the average salary of employees?', 'What is the total salary of employees?', ...]
+
+
+ +

Generate questions using the Vanna.AI API.

+ +
Returns:
+ +
+

List[str] or None: The questions, or None if an error occurred.

+
+
+ + +
+
+
+ + def + ask( question: Optional[str] = None, print_results: bool = True, auto_train: bool = True, generate_followups: bool = True) -> Optional[Tuple[Optional[str], Optional[pandas.core.frame.DataFrame], Optional[plotly.graph_objs._figure.Figure], Optional[List[str]]]]: + + +
+ + +

Example:

+ +
+
# RECOMMENDED IN A NOTEBOOK:
+sql, df, fig, followup_questions = vn.ask()
+
+
+sql, df, fig, followup_questions = vn.ask(question="What is the average salary of employees?")
+# SELECT AVG(salary) FROM employees
+
+
+ +

Ask a question using the Vanna.AI API. This generates an SQL query, runs it, and returns the results in a dataframe and a Plotly figure. +If you set print_results to True, the sql, dataframe, and figure will be output to the screen instead of returned.

+ +
Arguments:
+ +
    +
  • question (str): The question to ask. If None, you will be prompted to enter a question.
  • +
  • print_results (bool): Whether to print the SQL query and results.
  • +
  • auto_train (bool): Whether to automatically train the model if the SQL query is incorrect.
  • +
  • generate_followups (bool): Whether to generate follow-up questions.
  • +
+ +
Returns:
+ +
+

str or None: The SQL query, or None if an error occurred. + pd.DataFrame or None: The results of the SQL query, or None if an error occurred. + plotly.graph_objs.Figure or None: The Plotly figure, or None if an error occurred. + List[str] or None: The follow-up questions, or None if an error occurred.

+
+
+ + +
+
+
+ + def + generate_plotly_code( question: Optional[str], sql: Optional[str], df: pandas.core.frame.DataFrame, chart_instructions: Optional[str] = None) -> str: + + +
+ + +

Example:

+ +
+
vn.generate_plotly_code(
+    question="What is the average salary of employees?",
+    sql="SELECT AVG(salary) FROM employees",
+    df=df
+)
+# fig = px.bar(df, x="name", y="salary")
+
+
+ +

Generate Plotly code using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • question (str): The question to generate Plotly code for.
  • +
  • sql (str): The SQL query to generate Plotly code for.
  • +
  • df (pd.DataFrame): The dataframe to generate Plotly code for.
  • +
  • chart_instructions (str): Optional instructions for how to plot the chart.
  • +
+ +
Returns:
+ +
+

str or None: The Plotly code, or None if an error occurred.

+
+
+ + +
+
+
+ + def + get_plotly_figure( plotly_code: str, df: pandas.core.frame.DataFrame, dark_mode: bool = True) -> plotly.graph_objs._figure.Figure: + + +
+ + +

Example:

+ +
+
fig = vn.get_plotly_figure(
+    plotly_code="fig = px.bar(df, x='name', y='salary')",
+    df=df
+)
+fig.show()
+
+
+ +

Get a Plotly figure from a dataframe and Plotly code.

+ +
Arguments:
+ +
    +
  • df (pd.DataFrame): The dataframe to use.
  • +
  • plotly_code (str): The Plotly code to use.
  • +
+ +
Returns:
+ +
+

plotly.graph_objs.Figure: The Plotly figure.

+
+
+ + +
+
+
+ + def + get_results(cs, default_database: str, sql: str) -> pandas.core.frame.DataFrame: + + +
+ + +

DEPRECATED. Use vn.run_sql instead. +Run the SQL query and return the results as a pandas dataframe. This is just a helper function that does not use the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • cs: Snowflake connection cursor.
  • +
  • default_database (str): The default database to use.
  • +
  • sql (str): The SQL query to execute.
  • +
+ +
Returns:
+ +
+

pd.DataFrame: The results of the SQL query.

+
+
+ + +
+
+
+ + def + generate_explanation(sql: str) -> str: + + +
+ + +

Example:

+ +
+
vn.generate_explanation(sql="SELECT * FROM students WHERE name = 'John Doe'")
+# 'This query selects all columns from the students table where the name is John Doe.'
+
+
+ +

Generate an explanation of an SQL query using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • sql (str): The SQL query to generate an explanation for.
  • +
+ +
Returns:
+ +
+

str or None: The explanation, or None if an error occurred.

+
+
+ + +
+
+
+ + def + generate_question(sql: str) -> str: + + +
+ + +

Example:

+ +
+
vn.generate_question(sql="SELECT * FROM students WHERE name = 'John Doe'")
+# 'What is the name of the student?'
+
+
+ +

Generate a question from an SQL query using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • sql (str): The SQL query to generate a question for.
  • +
+ +
Returns:
+ +
+

str or None: The question, or None if an error occurred.

+
+
+ + +
+
+
+ + def + get_all_questions() -> pandas.core.frame.DataFrame: + + +
+ + +

Get a list of questions from the Vanna.AI API.

+ +

Example:

+ +
+
questions = vn.get_all_questions()
+
+
+ +
Returns:
+ +
+

pd.DataFrame or None: The list of questions, or None if an error occurred.

+
+
+ + +
+
+
+ + def + get_training_data() -> pandas.core.frame.DataFrame: + + +
+ + +

Get the training data for the current model

+ +

Example:

+ +
+
training_data = vn.get_training_data()
+
+
+ +
Returns:
+ +
+

pd.DataFrame or None: The training data, or None if an error occurred.

+
+
+ + +
+
+
+ + def + connect_to_sqlite(url: str): + + +
+ + +

Connect to a SQLite database. This is just a helper function to set [vn.run_sql][run_sql]

+ +
Arguments:
+ +
    +
  • url (str): The URL of the database to connect to.
  • +
+ +
Returns:
+ +
+

None

+
+
+ + +
+
+
+ + def + connect_to_snowflake( account: str, username: str, password: str, database: str, role: Optional[str] = None): + + +
+ + +

Connect to Snowflake using the Snowflake connector. This is just a helper function to set [vn.run_sql][run_sql]

+ +

Example:

+ +
+
import snowflake.connector
+
+vn.connect_to_snowflake(
+    account="myaccount",
+    username="myusername",
+    password="mypassword",
+    database="mydatabase",
+    role="myrole",
+)
+
+
+ +
Arguments:
+ +
    +
  • account (str): The Snowflake account name.
  • +
  • username (str): The Snowflake username.
  • +
  • password (str): The Snowflake password.
  • +
  • database (str): The default database to use.
  • +
  • role (Union[str, None], optional): The role to use. Defaults to None.
  • +
+
+ + +
+
+
+ + def + connect_to_postgres( host: str = None, dbname: str = None, user: str = None, password: str = None, port: int = None): + + +
+ + +

Connect to postgres using the psycopg2 connector. This is just a helper function to set [vn.run_sql][run_sql] +Example:

+ +
+
import psycopg2.connect
+vn.connect_to_bigquery(
+    host="myhost",
+    dbname="mydatabase",
+    user="myuser",
+    password="mypassword",
+    port=5432
+)
+
+
+ +
Arguments:
+ +
    +
  • host (str): The postgres host.
  • +
  • dbname (str): The postgres database name.
  • +
  • user (str): The postgres user.
  • +
  • password (str): The postgres password.
  • +
  • port (int): The postgres Port.
  • +
+
+ + +
+
+
+ + def + connect_to_bigquery(cred_file_path: str = None, project_id: str = None): + + +
+ + +

Connect to gcs using the bigquery connector. This is just a helper function to set [vn.run_sql][run_sql] +Example:

+ +
+
import bigquery.Client
+vn.connect_to_bigquery(
+    project_id="myprojectid",
+    cred_file_path="path/to/credentials.json",
+)
+
+
+ +
Arguments:
+ +
    +
  • project_id (str): The gcs project id.
  • +
  • cred_file_path (str): The gcs credential file path
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/vanna/base.html b/vanna/base.html new file mode 100644 index 000000000..5a302d9d3 --- /dev/null +++ b/vanna/base.html @@ -0,0 +1,254 @@ + + + + + + + vanna.base API documentation + + + + + + + + + + +
+
+

+vanna.base

+ + + + + +
+
+ + \ No newline at end of file diff --git a/vanna/base/base.html b/vanna/base/base.html new file mode 100644 index 000000000..7ea804c8b --- /dev/null +++ b/vanna/base/base.html @@ -0,0 +1,1105 @@ + + + + + + + vanna.base.base API documentation + + + + + + + + + + +
+
+

+vanna.base.base

+ + + + + +
+
+
+ + class + VannaBase(abc.ABC): + + +
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+
+ config + + +
+ + + + +
+
+
+ run_sql_is_set + + +
+ + + + +
+
+
+ + def + generate_sql(self, question: str, **kwargs) -> str: + + +
+ + + + +
+
+
+ + def + generate_followup_questions(self, question: str, **kwargs) -> str: + + +
+ + + + +
+
+
+ + def + generate_questions(self, **kwargs) -> list[str]: + + +
+ + +

Example:

+ +
+
vn.generate_questions()
+
+
+ +

Generate a list of questions that you can ask Vanna.AI.

+
+ + +
+
+
+
@abstractmethod
+ + def + generate_embedding(self, data: str, **kwargs) -> list[float]: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + get_similar_question_sql(self, question: str, **kwargs) -> list: + + +
+ + + + +
+ + +
+
+
@abstractmethod
+ + def + add_question_sql(self, question: str, sql: str, **kwargs) -> str: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + add_ddl(self, ddl: str, **kwargs) -> str: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + add_documentation(self, doc: str, **kwargs) -> str: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + get_training_data(self, **kwargs) -> pandas.core.frame.DataFrame: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + remove_training_data(id: str, **kwargs) -> bool: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + get_sql_prompt( self, question: str, question_sql_list: list, ddl_list: list, doc_list: list, **kwargs): + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + get_followup_questions_prompt( self, question: str, question_sql_list: list, ddl_list: list, doc_list: list, **kwargs): + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + submit_prompt(self, prompt, **kwargs) -> str: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + generate_question(self, sql: str, **kwargs) -> str: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + generate_plotly_code( self, question: str = None, sql: str = None, df_metadata: str = None, **kwargs) -> str: + + +
+ + + + +
+
+
+ + def + connect_to_snowflake( self, account: str, username: str, password: str, database: str, role: Optional[str] = None, warehouse: Optional[str] = None): + + +
+ + + + +
+
+
+ + def + connect_to_sqlite(self, url: str): + + +
+ + +

Connect to a SQLite database. This is just a helper function to set [vn.run_sql][vanna.run_sql]

+ +
Arguments:
+ +
    +
  • url (str): The URL of the database to connect to.
  • +
+ +
Returns:
+ +
+

None

+
+
+ + +
+
+
+ + def + connect_to_postgres( self, host: str = None, dbname: str = None, user: str = None, password: str = None, port: int = None): + + +
+ + +

Connect to postgres using the psycopg2 connector. This is just a helper function to set [vn.run_sql][vanna.run_sql] +Example:

+ +
+
vn.connect_to_postgres(
+    host="myhost",
+    dbname="mydatabase",
+    user="myuser",
+    password="mypassword",
+    port=5432
+)
+
+
+ +
Arguments:
+ +
    +
  • host (str): The postgres host.
  • +
  • dbname (str): The postgres database name.
  • +
  • user (str): The postgres user.
  • +
  • password (str): The postgres password.
  • +
  • port (int): The postgres Port.
  • +
+
+ + +
+
+
+ + def + connect_to_bigquery(self, cred_file_path: str = None, project_id: str = None): + + +
+ + +

Connect to gcs using the bigquery connector. This is just a helper function to set [vn.run_sql][vanna.run_sql] +Example:

+ +
+
vn.connect_to_bigquery(
+    project_id="myprojectid",
+    cred_file_path="path/to/credentials.json",
+)
+
+
+ +
Arguments:
+ +
    +
  • project_id (str): The gcs project id.
  • +
  • cred_file_path (str): The gcs credential file path
  • +
+
+ + +
+
+
+ + def + run_sql(sql: str, **kwargs) -> pandas.core.frame.DataFrame: + + +
+ + + + +
+
+
+ + def + ask( self, question: Optional[str] = None, print_results: bool = True, auto_train: bool = True) -> Optional[Tuple[Optional[str], Optional[pandas.core.frame.DataFrame], Optional[plotly.graph_objs._figure.Figure]]]: + + +
+ + + + +
+
+
+ + def + train( self, question: str = None, sql: str = None, ddl: str = None, documentation: str = None, plan: vanna.types.TrainingPlan = None) -> str: + + +
+ + +

Example:

+ +
+
vn.train()
+
+
+ +

Train Vanna.AI on a question and its corresponding SQL query. +If you call it with no arguments, it will check if you connected to a database and it will attempt to train on the metadata of that database. +If you call it with the sql argument, it's equivalent to [add_sql()][vanna.add_sql]. +If you call it with the ddl argument, it's equivalent to [add_ddl()][vanna.add_ddl]. +If you call it with the documentation argument, it's equivalent to [add_documentation()][vanna.add_documentation]. +Additionally, you can pass a [TrainingPlan][vanna.TrainingPlan] object. Get a training plan with [vn.get_training_plan_experimental()][vanna.get_training_plan_experimental].

+ +
Arguments:
+ +
    +
  • question (str): The question to train on.
  • +
  • sql (str): The SQL query to train on.
  • +
  • ddl (str): The DDL statement.
  • +
  • documentation (str): The documentation to train on.
  • +
  • plan (TrainingPlan): The training plan to train on.
  • +
+
+ + +
+
+
+ + def + get_training_plan_snowflake( self, filter_databases: Optional[List[str]] = None, filter_schemas: Optional[List[str]] = None, include_information_schema: bool = False, use_historical_queries: bool = True) -> vanna.types.TrainingPlan: + + +
+ + + + +
+
+
+ + def + get_plotly_figure( self, plotly_code: str, df: pandas.core.frame.DataFrame, dark_mode: bool = True) -> plotly.graph_objs._figure.Figure: + + +
+ + +

Example:

+ +
+
fig = vn.get_plotly_figure(
+    plotly_code="fig = px.bar(df, x='name', y='salary')",
+    df=df
+)
+fig.show()
+
+
+ +

Get a Plotly figure from a dataframe and Plotly code.

+ +
Arguments:
+ +
    +
  • df (pd.DataFrame): The dataframe to use.
  • +
  • plotly_code (str): The Plotly code to use.
  • +
+ +
Returns:
+ +
+

plotly.graph_objs.Figure: The Plotly figure.

+
+
+ + +
+
+
+
+ + class + SplitStorage(VannaBase): + + +
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+
+ + def + get_similar_question_sql(self, embedding: str, **kwargs) -> list: + + +
+ + + + +
+ + +
+
+
@abstractmethod
+ + def + store_question_sql_embedding(self, embedding: str, **kwargs) -> str: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + store_ddl_embedding(self, embedding: str, **kwargs) -> str: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + store_documentation_embedding(self, embedding: str, **kwargs) -> str: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + get_similar_question_sql_ids(self, embedding: str, **kwargs) -> list: + + +
+ + + + +
+ + +
+
+
@abstractmethod
+ + def + get_question_sql(self, question_sql_ids: list, **kwargs) -> list: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + get_documentation(self, doc_ids: list, **kwargs) -> list: + + +
+ + + + +
+
+
+
@abstractmethod
+ + def + get_ddl(self, ddl_ids: list, **kwargs) -> list: + + +
+ + + + +
+ +
+
+ + \ No newline at end of file diff --git a/vanna/chromadb.html b/vanna/chromadb.html new file mode 100644 index 000000000..8abaad6c9 --- /dev/null +++ b/vanna/chromadb.html @@ -0,0 +1,254 @@ + + + + + + + vanna.chromadb API documentation + + + + + + + + + + +
+
+

+vanna.chromadb

+ + + + + +
+
+ + \ No newline at end of file diff --git a/vanna/chromadb/chromadb_vector.html b/vanna/chromadb/chromadb_vector.html new file mode 100644 index 000000000..49135bb0e --- /dev/null +++ b/vanna/chromadb/chromadb_vector.html @@ -0,0 +1,518 @@ + + + + + + + vanna.chromadb.chromadb_vector API documentation + + + + + + + + + + +
+
+

+vanna.chromadb.chromadb_vector

+ + + + + +
+
+
+ default_ef = +<chromadb.utils.embedding_functions.ONNXMiniLM_L6_V2 object> + + +
+ + + + +
+
+
+ + class + ChromaDB_VectorStore(vanna.base.base.VannaBase): + + +
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+
+ chroma_client + + +
+ + + + +
+
+
+ documentation_collection + + +
+ + + + +
+
+
+ ddl_collection + + +
+ + + + +
+
+
+ sql_collection + + +
+ + + + +
+
+
+ + def + generate_embedding(self, data: str, **kwargs) -> list[float]: + + +
+ + + + +
+
+
+ + def + add_question_sql(self, question: str, sql: str, **kwargs) -> str: + + +
+ + + + +
+
+
+ + def + add_ddl(self, ddl: str, **kwargs) -> str: + + +
+ + + + +
+
+
+ + def + add_documentation(self, doc: str, **kwargs) -> str: + + +
+ + + + +
+
+
+ + def + get_training_data(self, **kwargs) -> pandas.core.frame.DataFrame: + + +
+ + + + +
+
+
+ + def + remove_training_data(self, id: str, **kwargs) -> bool: + + +
+ + + + +
+
+
+ + def + get_similar_question_sql(self, question: str, **kwargs) -> list: + + +
+ + + + +
+ + + +
+
+ + \ No newline at end of file diff --git a/vanna/exceptions.html b/vanna/exceptions.html new file mode 100644 index 000000000..21ecc9591 --- /dev/null +++ b/vanna/exceptions.html @@ -0,0 +1,518 @@ + + + + + + + vanna.exceptions API documentation + + + + + + + + + + +
+
+

+vanna.exceptions

+ + + + + +
+
+
+ + class + ImproperlyConfigured(builtins.BaseException): + + +
+ + +

Raise for incorrect configuration.

+
+ + +
+
Inherited Members
+
+
builtins.BaseException
+
BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+
+ + class + DependencyError(builtins.BaseException): + + +
+ + +

Raise for missing dependencies.

+
+ + +
+
Inherited Members
+
+
builtins.BaseException
+
BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+
+ + class + ConnectionError(builtins.BaseException): + + +
+ + +

Raise for connection

+
+ + +
+
Inherited Members
+
+
builtins.BaseException
+
BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+
+ + class + OTPCodeError(builtins.BaseException): + + +
+ + +

Raise for invalid otp or not able to send it

+
+ + +
+
Inherited Members
+
+
builtins.BaseException
+
BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+
+ + class + SQLRemoveError(builtins.BaseException): + + +
+ + +

Raise when not able to remove SQL

+
+ + +
+
Inherited Members
+
+
builtins.BaseException
+
BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+
+ + class + ExecutionError(builtins.BaseException): + + +
+ + +

Raise when not able to execute Code

+
+ + +
+
Inherited Members
+
+
builtins.BaseException
+
BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+
+ + class + ValidationError(builtins.BaseException): + + +
+ + +

Raise for validations

+
+ + +
+
Inherited Members
+
+
builtins.BaseException
+
BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+
+ + class + APIError(builtins.BaseException): + + +
+ + +

Raise for API errors

+
+ + +
+
Inherited Members
+
+
builtins.BaseException
+
BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/vanna/local.html b/vanna/local.html new file mode 100644 index 000000000..7dafe267d --- /dev/null +++ b/vanna/local.html @@ -0,0 +1,344 @@ + + + + + + + vanna.local API documentation + + + + + + + + + + +
+
+

+vanna.local

+ + + + + +
+
+ + + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+
+ + LocalContext_OpenAI(config=None) + + +
+ + + + +
+ +
+
+ + \ No newline at end of file diff --git a/vanna/openai.html b/vanna/openai.html new file mode 100644 index 000000000..64ae50bb6 --- /dev/null +++ b/vanna/openai.html @@ -0,0 +1,255 @@ + + + + + + + vanna.openai API documentation + + + + + + + + + + +
+
+

+vanna.openai

+ + + + + +
+
+ + \ No newline at end of file diff --git a/vanna/openai/openai_chat.html b/vanna/openai/openai_chat.html new file mode 100644 index 000000000..b08a39efd --- /dev/null +++ b/vanna/openai/openai_chat.html @@ -0,0 +1,506 @@ + + + + + + + vanna.openai.openai_chat API documentation + + + + + + + + + + +
+
+

+vanna.openai.openai_chat

+ + + + + +
+
+
+ + class + OpenAI_Chat(vanna.base.base.VannaBase): + + +
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+
+
@staticmethod
+ + def + system_message(message: str) -> dict: + + +
+ + + + +
+
+
+
@staticmethod
+ + def + user_message(message: str) -> dict: + + +
+ + + + +
+
+
+
@staticmethod
+ + def + assistant_message(message: str) -> dict: + + +
+ + + + +
+
+
+
@staticmethod
+ + def + str_to_approx_token_count(string: str) -> int: + + +
+ + + + +
+
+
+
@staticmethod
+ + def + add_ddl_to_prompt(initial_prompt: str, ddl_list: list[str], max_tokens: int = 14000) -> str: + + +
+ + + + +
+
+
+
@staticmethod
+ + def + add_documentation_to_prompt( initial_prompt: str, documentation_list: list[str], max_tokens: int = 14000) -> str: + + +
+ + + + +
+
+
+
@staticmethod
+ + def + add_sql_to_prompt(initial_prompt: str, sql_list: list[str], max_tokens: int = 14000) -> str: + + +
+ + + + +
+
+
+ + def + get_sql_prompt( self, question: str, question_sql_list: list, ddl_list: list, doc_list: list, **kwargs): + + +
+ + + + +
+
+
+ + def + get_followup_questions_prompt( self, question: str, df: pandas.core.frame.DataFrame, question_sql_list: list, ddl_list: list, doc_list: list, **kwargs): + + +
+ + + + +
+
+
+ + def + generate_question(self, sql: str, **kwargs) -> str: + + +
+ + + + +
+
+
+ + def + generate_plotly_code( self, question: str = None, sql: str = None, df_metadata: str = None, **kwargs) -> str: + + +
+ + + + +
+
+
+ + def + submit_prompt(self, prompt, **kwargs) -> str: + + +
+ + + + +
+ +
+
+ + \ No newline at end of file diff --git a/vanna/openai/openai_embeddings.html b/vanna/openai/openai_embeddings.html new file mode 100644 index 000000000..d9fd6f92b --- /dev/null +++ b/vanna/openai/openai_embeddings.html @@ -0,0 +1,327 @@ + + + + + + + vanna.openai.openai_embeddings API documentation + + + + + + + + + + +
+
+

+vanna.openai.openai_embeddings

+ + + + + +
+
+
+ + class + OpenAI_Embeddings(vanna.base.base.VannaBase): + + +
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+
+ + def + generate_embedding(self, data: str, **kwargs) -> list[float]: + + +
+ + + + +
+ +
+
+ + \ No newline at end of file diff --git a/vanna/remote.html b/vanna/remote.html new file mode 100644 index 000000000..4403982d2 --- /dev/null +++ b/vanna/remote.html @@ -0,0 +1,810 @@ + + + + + + + vanna.remote API documentation + + + + + + + + + + +
+
+

+vanna.remote

+ + + + + +
+
+
+ + class + VannaDefault(vanna.base.base.VannaBase): + + +
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+
+ + VannaDefault(model: str, api_key: str, config=None) + + +
+ + + + +
+
+
+ + def + get_training_data(self, **kwargs) -> pandas.core.frame.DataFrame: + + +
+ + +

Get the training data for the current model

+ +

Example:

+ +
+
training_data = vn.get_training_data()
+
+
+ +
Returns:
+ +
+

pd.DataFrame or None: The training data, or None if an error occurred.

+
+
+ + +
+
+
+ + def + remove_training_data(self, id: str, **kwargs) -> bool: + + +
+ + +

Remove training data from the model

+ +

Example:

+ +
+
vn.remove_training_data(id="1-ddl")
+
+
+ +
Arguments:
+ +
    +
  • id (str): The ID of the training data to remove.
  • +
+
+ + +
+
+
+ + def + generate_questions(self) -> list[str]: + + +
+ + +

Example:

+ +
+
vn.generate_questions()
+# ['What is the average salary of employees?', 'What is the total salary of employees?', ...]
+
+
+ +

Generate questions using the Vanna.AI API.

+ +
Returns:
+ +
+

List[str] or None: The questions, or None if an error occurred.

+
+
+ + +
+
+
+ + def + add_ddl(self, ddl: str, **kwargs) -> str: + + +
+ + +

Adds a DDL statement to the model's training data

+ +

Example:

+ +
+
vn.add_ddl(
+    ddl="CREATE TABLE employees (id INT, name VARCHAR(255), salary INT)"
+)
+
+
+ +
Arguments:
+ +
    +
  • ddl (str): The DDL statement to store.
  • +
+ +
Returns:
+ +
+

str: The ID of the DDL statement.

+
+
+ + +
+
+
+ + def + add_documentation(self, documentation: str, **kwargs) -> str: + + +
+ + +

Adds documentation to the model's training data

+ +

Example:

+ +
+
vn.add_documentation(
+    documentation="Our organization's definition of sales is the discount price of an item multiplied by the quantity sold."
+)
+
+
+ +
Arguments:
+ +
    +
  • documentation (str): The documentation string to store.
  • +
+ +
Returns:
+ +
+

str: The ID of the documentation string.

+
+
+ + +
+
+
+ + def + add_question_sql(self, question: str, sql: str, **kwargs) -> str: + + +
+ + +

Adds a question and its corresponding SQL query to the model's training data. The preferred way to call this is to use [vn.train(sql=...)][vanna.train].

+ +

Example:

+ +
+
vn.add_sql(
+    question="What is the average salary of employees?",
+    sql="SELECT AVG(salary) FROM employees"
+)
+
+
+ +
Arguments:
+ +
    +
  • question (str): The question to store.
  • +
  • sql (str): The SQL query to store.
  • +
  • tag (Union[str, None]): A tag to associate with the question and SQL query.
  • +
+ +
Returns:
+ +
+

str: The ID of the question and SQL query.

+
+
+ + +
+
+
+ + def + generate_embedding(self, data: str, **kwargs) -> list[float]: + + +
+ + +

Not necessary for remote models as embeddings are generated on the server side.

+
+ + +
+
+
+ + def + generate_plotly_code( self, question: str = None, sql: str = None, df_metadata: str = None, **kwargs) -> str: + + +
+ + +

Example:

+ +
+
vn.generate_plotly_code(
+    question="What is the average salary of employees?",
+    sql="SELECT AVG(salary) FROM employees",
+    df_metadata=df.dtypes
+)
+# fig = px.bar(df, x="name", y="salary")
+
+
+ +

Generate Plotly code using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • question (str): The question to generate Plotly code for.
  • +
  • sql (str): The SQL query to generate Plotly code for.
  • +
  • df (pd.DataFrame): The dataframe to generate Plotly code for.
  • +
  • chart_instructions (str): Optional instructions for how to plot the chart.
  • +
+ +
Returns:
+ +
+

str or None: The Plotly code, or None if an error occurred.

+
+
+ + +
+
+
+ + def + generate_question(self, sql: str, **kwargs) -> str: + + +
+ + +

Example:

+ +
+
vn.generate_question(sql="SELECT * FROM students WHERE name = 'John Doe'")
+# 'What is the name of the student?'
+
+
+ +

Generate a question from an SQL query using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • sql (str): The SQL query to generate a question for.
  • +
+ +
Returns:
+ +
+

str or None: The question, or None if an error occurred.

+
+
+ + +
+
+
+ + def + get_sql_prompt( self, question: str, question_sql_list: list, ddl_list: list, doc_list: list, **kwargs): + + +
+ + +

Not necessary for remote models as prompts are generated on the server side.

+
+ + +
+
+
+ + def + get_followup_questions_prompt( self, question: str, df: pandas.core.frame.DataFrame, question_sql_list: list, ddl_list: list, doc_list: list, **kwargs): + + +
+ + +

Not necessary for remote models as prompts are generated on the server side.

+
+ + +
+
+
+ + def + submit_prompt(self, prompt, **kwargs) -> str: + + +
+ + +

Not necessary for remote models as prompts are handled on the server side.

+
+ + +
+
+
+ + def + get_similar_question_sql(self, question: str, **kwargs) -> list: + + +
+ + +

Not necessary for remote models as similar questions are generated on the server side.

+
+ + +
+ + +
+
+ + def + generate_sql(self, question: str, **kwargs) -> str: + + +
+ + +

Example:

+ +
+
vn.generate_sql_from_question(question="What is the average salary of employees?")
+# SELECT AVG(salary) FROM employees
+
+
+ +

Generate an SQL query using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • question (str): The question to generate an SQL query for.
  • +
+ +
Returns:
+ +
+

str or None: The SQL query, or None if an error occurred.

+
+
+ + +
+
+
+ + def + generate_followup_questions( self, question: str, df: pandas.core.frame.DataFrame, **kwargs) -> list[str]: + + +
+ + +

Example:

+ +
+
vn.generate_followup_questions(question="What is the average salary of employees?", df=df)
+# ['What is the average salary of employees in the Sales department?', 'What is the average salary of employees in the Engineering department?', ...]
+
+
+ +

Generate follow-up questions using the Vanna.AI API.

+ +
Arguments:
+ +
    +
  • question (str): The question to generate follow-up questions for.
  • +
  • df (pd.DataFrame): The DataFrame to generate follow-up questions for.
  • +
+ +
Returns:
+ +
+

List[str] or None: The follow-up questions, or None if an error occurred.

+
+
+ + +
+ +
+
+ + \ No newline at end of file diff --git a/vanna/types.html b/vanna/types.html new file mode 100644 index 000000000..3c0e07983 --- /dev/null +++ b/vanna/types.html @@ -0,0 +1,2678 @@ + + + + + + + vanna.types API documentation + + + + + + + + + + +
+
+

+vanna.types

+ + + + + +
+
+
+
@dataclass
+ + class + Status: + + +
+ + + + +
+
+ + Status(success: bool, message: str) + + +
+ + + + +
+
+
+ success: bool + + +
+ + + + +
+
+
+ message: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + StatusWithId: + + +
+ + + + +
+
+ + StatusWithId(success: bool, message: str, id: str) + + +
+ + + + +
+
+
+ success: bool + + +
+ + + + +
+
+
+ message: str + + +
+ + + + +
+
+
+ id: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionList: + + +
+ + + + +
+
+ + QuestionList(questions: List[FullQuestionDocument]) + + +
+ + + + +
+
+
+ questions: List[FullQuestionDocument] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + FullQuestionDocument: + + +
+ + + + +
+
+ + FullQuestionDocument( id: QuestionId, question: Question, answer: SQLAnswer | None, data: DataResult | None, plotly: PlotlyResult | None) + + +
+ + + + +
+
+
+ id: QuestionId + + +
+ + + + +
+
+
+ question: Question + + +
+ + + + +
+
+
+ answer: SQLAnswer | None + + +
+ + + + +
+
+
+ data: DataResult | None + + +
+ + + + +
+
+
+ plotly: PlotlyResult | None + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionSQLPair: + + +
+ + + + +
+
+ + QuestionSQLPair(question: str, sql: str, tag: Optional[str]) + + +
+ + + + +
+
+
+ question: str + + +
+ + + + +
+
+
+ sql: str + + +
+ + + + +
+
+
+ tag: Optional[str] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Organization: + + +
+ + + + +
+
+ + Organization( name: str, user: str | None, connection: Connection | None) + + +
+ + + + +
+
+
+ name: str + + +
+ + + + +
+
+
+ user: str | None + + +
+ + + + +
+
+
+ connection: Connection | None + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + OrganizationList: + + +
+ + + + +
+
+ + OrganizationList(organizations: List[str]) + + +
+ + + + +
+
+
+ organizations: List[str] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionStringList: + + +
+ + + + +
+
+ + QuestionStringList(questions: List[str]) + + +
+ + + + +
+
+
+ questions: List[str] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Visibility: + + +
+ + + + +
+
+ + Visibility(visibility: bool) + + +
+ + + + +
+
+
+ visibility: bool + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + UserEmail: + + +
+ + + + +
+
+ + UserEmail(email: str) + + +
+ + + + +
+
+
+ email: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + NewOrganization: + + +
+ + + + +
+
+ + NewOrganization(org_name: str, db_type: str) + + +
+ + + + +
+
+
+ org_name: str + + +
+ + + + +
+
+
+ db_type: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + NewOrganizationMember: + + +
+ + + + +
+
+ + NewOrganizationMember(org_name: str, email: str, is_admin: bool) + + +
+ + + + +
+
+
+ org_name: str + + +
+ + + + +
+
+
+ email: str + + +
+ + + + +
+
+
+ is_admin: bool + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + UserOTP: + + +
+ + + + +
+
+ + UserOTP(email: str, otp: str) + + +
+ + + + +
+
+
+ email: str + + +
+ + + + +
+
+
+ otp: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + ApiKey: + + +
+ + + + +
+
+ + ApiKey(key: str) + + +
+ + + + +
+
+
+ key: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionId: + + +
+ + + + +
+
+ + QuestionId(id: str) + + +
+ + + + +
+
+
+ id: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Question: + + +
+ + + + +
+
+ + Question(question: str) + + +
+ + + + +
+
+
+ question: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionCategory: + + +
+ + + + +
+
+ + QuestionCategory(question: str, category: str) + + +
+ + + + +
+
+
+ question: str + + +
+ + + + +
+
+
+ category: str + + +
+ + + + +
+
+
+ NO_SQL_GENERATED = +'No SQL Generated' + + +
+ + + + +
+
+
+ SQL_UNABLE_TO_RUN = +'SQL Unable to Run' + + +
+ + + + +
+
+
+ BOOTSTRAP_TRAINING_QUERY = +'Bootstrap Training Query' + + +
+ + + + +
+
+
+ SQL_RAN = +'SQL Ran Successfully' + + +
+ + + + +
+
+
+ FLAGGED_FOR_REVIEW = +'Flagged for Review' + + +
+ + + + +
+
+
+ REVIEWED_AND_APPROVED = +'Reviewed and Approved' + + +
+ + + + +
+
+
+ REVIEWED_AND_REJECTED = +'Reviewed and Rejected' + + +
+ + + + +
+
+
+ REVIEWED_AND_UPDATED = +'Reviewed and Updated' + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + AccuracyStats: + + +
+ + + + +
+
+ + AccuracyStats(num_questions: int, data: Dict[str, int]) + + +
+ + + + +
+
+
+ num_questions: int + + +
+ + + + +
+
+
+ data: Dict[str, int] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Followup: + + +
+ + + + +
+
+ + Followup(followup: str) + + +
+ + + + +
+
+
+ followup: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + QuestionEmbedding: + + +
+ + + + +
+
+ + QuestionEmbedding(question: Question, embedding: List[float]) + + +
+ + + + +
+
+
+ question: Question + + +
+ + + + +
+
+
+ embedding: List[float] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Connection: + + +
+ + + + +
+
+
+
@dataclass
+ + class + SQLAnswer: + + +
+ + + + +
+
+ + SQLAnswer(raw_answer: str, prefix: str, postfix: str, sql: str) + + +
+ + + + +
+
+
+ raw_answer: str + + +
+ + + + +
+
+
+ prefix: str + + +
+ + + + +
+
+
+ postfix: str + + +
+ + + + +
+
+
+ sql: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Explanation: + + +
+ + + + +
+
+ + Explanation(explanation: str) + + +
+ + + + +
+
+
+ explanation: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + DataResult: + + +
+ + + + +
+
+ + DataResult( question: str | None, sql: str | None, table_markdown: str, error: str | None, correction_attempts: int) + + +
+ + + + +
+
+
+ question: str | None + + +
+ + + + +
+
+
+ sql: str | None + + +
+ + + + +
+
+
+ table_markdown: str + + +
+ + + + +
+
+
+ error: str | None + + +
+ + + + +
+
+
+ correction_attempts: int + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + PlotlyResult: + + +
+ + + + +
+
+ + PlotlyResult(plotly_code: str) + + +
+ + + + +
+
+
+ plotly_code: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + WarehouseDefinition: + + +
+ + + + +
+
+ + WarehouseDefinition(name: str, tables: List[TableDefinition]) + + +
+ + + + +
+
+
+ name: str + + +
+ + + + +
+
+
+ tables: List[TableDefinition] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + TableDefinition: + + +
+ + + + +
+
+ + TableDefinition( schema_name: str, table_name: str, ddl: str | None, columns: List[ColumnDefinition]) + + +
+ + + + +
+
+
+ schema_name: str + + +
+ + + + +
+
+
+ table_name: str + + +
+ + + + +
+
+
+ ddl: str | None + + +
+ + + + +
+
+
+ columns: List[ColumnDefinition] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + ColumnDefinition: + + +
+ + + + +
+
+ + ColumnDefinition( name: str, type: str, is_primary_key: bool, is_foreign_key: bool, foreign_key_table: str, foreign_key_column: str) + + +
+ + + + +
+
+
+ name: str + + +
+ + + + +
+
+
+ type: str + + +
+ + + + +
+
+
+ is_primary_key: bool + + +
+ + + + +
+
+
+ is_foreign_key: bool + + +
+ + + + +
+
+
+ foreign_key_table: str + + +
+ + + + +
+
+
+ foreign_key_column: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + Diagram: + + +
+ + + + +
+
+ + Diagram(raw: str, mermaid_code: str) + + +
+ + + + +
+
+
+ raw: str + + +
+ + + + +
+
+
+ mermaid_code: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + StringData: + + +
+ + + + +
+
+ + StringData(data: str) + + +
+ + + + +
+
+
+ data: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + DataFrameJSON: + + +
+ + + + +
+
+ + DataFrameJSON(data: str) + + +
+ + + + +
+
+
+ data: str + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + TrainingData: + + +
+ + + + +
+
+ + TrainingData(questions: List[dict], ddl: List[str], documentation: List[str]) + + +
+ + + + +
+
+
+ questions: List[dict] + + +
+ + + + +
+
+
+ ddl: List[str] + + +
+ + + + +
+
+
+ documentation: List[str] + + +
+ + + + +
+
+
+
+
@dataclass
+ + class + TrainingPlanItem: + + +
+ + + + +
+
+ + TrainingPlanItem(item_type: str, item_group: str, item_name: str, item_value: str) + + +
+ + + + +
+
+
+ item_type: str + + +
+ + + + +
+
+
+ item_group: str + + +
+ + + + +
+
+
+ item_name: str + + +
+ + + + +
+
+
+ item_value: str + + +
+ + + + +
+
+
+ ITEM_TYPE_SQL = +'sql' + + +
+ + + + +
+
+
+ ITEM_TYPE_DDL = +'ddl' + + +
+ + + + +
+
+
+ ITEM_TYPE_IS = +'is' + + +
+ + + + +
+
+
+
+ + class + TrainingPlan: + + +
+ + +

A class representing a training plan. You can see what's in it, and remove items from it that you don't want trained.

+ +

Example:

+ +
+
plan = vn.get_training_plan()
+
+plan.get_summary()
+
+
+
+ + +
+
+ + TrainingPlan(plan: List[TrainingPlanItem]) + + +
+ + + + +
+
+
+ + def + get_summary(self) -> List[str]: + + +
+ + +

Example:

+ +
+
plan = vn.get_training_plan()
+
+plan.get_summary()
+
+
+ +

Get a summary of the training plan.

+ +
Returns:
+ +
+

List[str]: A list of strings describing the training plan.

+
+
+ + +
+
+
+ + def + remove_item(self, item: str): + + +
+ + +

Example:

+ +
+
plan = vn.get_training_plan()
+
+plan.remove_item("Train on SQL: What is the average salary of employees?")
+
+
+ +

Remove an item from the training plan.

+ +
Arguments:
+ +
    +
  • item (str): The item to remove.
  • +
+
+ + +
+
+
+ + \ No newline at end of file diff --git a/vanna/utils.html b/vanna/utils.html new file mode 100644 index 000000000..89ee87e81 --- /dev/null +++ b/vanna/utils.html @@ -0,0 +1,286 @@ + + + + + + + vanna.utils API documentation + + + + + + + + + + +
+
+

+vanna.utils

+ + + + + +
+
+
+ + def + validate_config_path(path): + + +
+ + + + +
+
+
+ + def + sanitize_model_name(model_name): + + +
+ + + + +
+
+ + \ No newline at end of file diff --git a/vn-ask.html b/vn-ask.html new file mode 100644 index 000000000..aaaafe93a --- /dev/null +++ b/vn-ask.html @@ -0,0 +1,8030 @@ + + + + + + + + + + + + + +Vanna Docs: + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + +
+ + diff --git a/vn-connect-to-bigquery.html b/vn-connect-to-bigquery.html new file mode 100644 index 000000000..c299496ab --- /dev/null +++ b/vn-connect-to-bigquery.html @@ -0,0 +1,7916 @@ + + + + + + + + + + + + + +Vanna Docs: + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + +
+ + diff --git a/vn-connect-to-postgres.html b/vn-connect-to-postgres.html new file mode 100644 index 000000000..a4c7ba8c2 --- /dev/null +++ b/vn-connect-to-postgres.html @@ -0,0 +1,8585 @@ + + + + + + + + + + + + + +Vanna Docs: + + + + + + + + + + + + + + + + + + + + +
+ + + + + + +
+ + diff --git a/vn-train.html b/vn-train.html new file mode 100644 index 000000000..8fb0206ab --- /dev/null +++ b/vn-train.html @@ -0,0 +1,7848 @@ + + + + + + + + + + + + + +Vanna Docs: Snowflake + + + + + + + + + + + + + + + + + + + + +
+ + + + Run Using Colab + + + + Open in GitHub + + + + + + + + +
+ + diff --git a/workflow.md b/workflow.md new file mode 100644 index 000000000..af69ca5bd --- /dev/null +++ b/workflow.md @@ -0,0 +1,19 @@ +# What's the Workflow? +```mermaid +flowchart TD + DB[(Known Correct Question-SQL)] + Try[Try to Use DDL/Documentation] + SQL(SQL) + Check{Is the SQL correct?} + Generate[fa:fa-circle-question Use Examples to Generate] + DB --> Find + Question[fa:fa-circle-question Question] --> Find{fa:fa-magnifying-glass Do we have similar questions?} + Find -- Yes --> Generate + Find -- No --> Try + Generate --> SQL + Try --> SQL + SQL --> Check + Check -- Yes --> DB + Check -- No --> Analyst[fa:fa-glasses Analyst Writes the SQL] + Analyst -- Adds --> DB +``` \ No newline at end of file