-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain_plm.py
345 lines (279 loc) · 13 KB
/
train_plm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from importer import *
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir_imgs', type=str, required=True,
help='Path to shapenet rendered images')
parser.add_argument('--data_dir_pcl', type=str, required=True,
help='Path to shapenet pointclouds')
parser.add_argument('--mode', type=str, required=True,
help='Latent Matching setup. Choose from [lm, plm]')
parser.add_argument('--exp', type=str, required=True,
help='Name of Experiment')
parser.add_argument('--gpu', type=str, required=True,
help='GPU to use')
parser.add_argument('--ae_logs', type=str, required=True,
help='Location of pretrained auto-encoder snapshot')
parser.add_argument('--category', type=str, required=True,
help='Category to train on : \
["all", "airplane", "bench", "cabinet", "car", "chair", "lamp", \
"monitor", "rifle", "sofa", "speaker", "table", "telephone", "vessel"]')
parser.add_argument('--bottleneck', type=int, required=True, default=128,
help='latent space size')
parser.add_argument('--loss', type=str, required=True,
help='Loss to optimize on l1/l2/chamfer/vae')
parser.add_argument('--batch_size', type=int, default=32,
help='Batch Size during training')
parser.add_argument('--lr', type=float, default=0.00005,
help='Learning Rate')
parser.add_argument('--bn_decoder', action='store_true',
help='Supply this parameter if you want bn_decoder, otherwise ignore')
parser.add_argument('--load_best_ae', action='store_true',
help='supply this parameter to load best model from the auto-encoder')
parser.add_argument('--max_epoch', type=int, default=30,
help='max num of epoch')
parser.add_argument('--print_n', type=int, default=100,
help='print_n')
parser.add_argument('--sanity_check', action='store_true',
help='supply this parameter to visualize autoencoder reconstructions')
# Diversity Loss Parameters
parser.add_argument('--alpha', type=float, required=True,
help='Scaling factor for determining maximum alpha')
parser.add_argument('--penalty_angle', type=float, default=20.,
help='How much to penalize around 180 degree azimuth in degrees')
parser.add_argument('--weight', type=float, required=True,
help='Loss balancing factor')
FLAGS = parser.parse_args()
print '-='*50
print FLAGS
print '-='*50
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
BATCH_SIZE = FLAGS.batch_size # Training Batch Size
VAL_BATCH_SIZE = FLAGS.batch_size # Validation Batch Size
NUM_POINTS = 2048 # Number of points predicted
HEIGHT = 128 # Height of input RGB image
WIDTH = 128 # Width of input RGB image
def get_alpha(az_inp, penalty_angle):
'''
Description:
This function is used to calculate maximum variation for sigma
'''
penalty_angle = np.pi/180. * penalty_angle #convert penalty_angle from degrees to radians
return FLAGS.alpha * tf.exp(-((az_inp-np.pi)**2/(penalty_angle**2)))
def fetch_batch(models, indices, batch_num, batch_size):
'''
Input:
models: list of paths to shapenet models
indices: list of ind pairs, where
ind[0] : model index (range--> [0, len(models)-1])
ind[1] : view index (range--> [0, NUM_VIEWS-1])
batch_num: batch_num during epoch
batch_size: batch size for training or validation
Returns:
batch_ip: input RGB image of shape (B, HEIGHT, WIDTH, 3)
batch_gt: gt point cloud of shape (B, NUM_POINTS, 3)
batch_az: azimuth value in radians of shape (B, )
Description:
Batch Loader
'''
batch_ip = []
batch_gt = []
batch_az = []
for ind in indices[batch_num*batch_size:batch_num*batch_size+batch_size]:
model_path = models[ind[0]]
img_path = join(FLAGS.data_dir_imgs, model_path, 'rendering', PNG_FILES[ind[1]])
pcl_path = join(FLAGS.data_dir_pcl, model_path, 'pointcloud_2048.npy')
metadata_path = join(model_path, 'rendering', 'rendering_metadata.txt')
pcl_gt = np.load(pcl_path)
metadata = np.loadtxt(metadata_path)
x = metadata[ind[1]][0]
xangle = np.pi / 180. * x
y = metadata[ind[1]][1]
yangle = np.pi / 180. * y
ip_image = cv2.imread(img_path)[4:-5, 4:-5, :3]
ip_image = cv2.cvtColor(ip_image, cv2.COLOR_BGR2RGB)
batch_ip.append(ip_image)
batch_gt.append(pcl_gt)
batch_az.append(xangle) # in radians
batch_az = np.array(batch_az).astype('float32')
return np.array(batch_ip), np.array(batch_gt), batch_az
def get_epoch_loss(val_models, val_pair_indices):
'''
Input:
val_models: list of absolute paths to models in validation set
val_pair_indices: list of ind pairs for validation set
--> ind[0] : model index (range--> [0, len(models)-1])
--> ind[1] : view index (range--> [0, NUM_VIEWS-1])
Returns:
val_chamfer: chamfer distance calculated on scaled prediction and gt
val_forward: forward distance calculated on scaled prediction and gt
val_backward: backward distance calculated on scaled prediction and gt
Description:
Calculate Val epoch metrics (chamfer, forward, backward, l1, l2, lreg)
and log them to tensorboard
'''
batches = len(val_pair_indices)/VAL_BATCH_SIZE
val_stats = {}
val_stats = reset_stats(ph_summary, val_stats)
for b in xrange(batches):
batch_ip, batch_gt, batch_az = fetch_batch(val_models, val_pair_indices, b, VAL_BATCH_SIZE)
runlist = [loss, L1, L2, L_reg, chamfer_distance_rimg_scaled, dists_forward_rimg_scaled, dists_backward_rimg_scaled]
_l, _l1, _l2, _lreg, C, F, B = sess.run(runlist, feed_dict={pcl_gt:batch_gt, img_inp:batch_ip, az_inp:batch_az})
_summary_losses = [F, B, C, _l1, _l2, _lreg, _l]
val_stats = update_stats(ph_summary, _summary_losses, val_stats, batches)
summ = sess.run(merged_summ, feed_dict=val_stats)
return val_stats[ph_dists_chamfer], val_stats[ph_dists_forward], val_stats[ph_dists_backward], summ
if __name__ == '__main__':
# Create a folder for experiments and copy the training file
create_folder(FLAGS.exp)
train_filename = basename(__file__)
os.system('cp %s %s'%(train_filename, FLAGS.exp))
with open(join(FLAGS.exp, 'settings.txt'), 'w') as f:
f.write(str(FLAGS)+'\n')
# Create Placeholders
img_inp = tf.placeholder(tf.float32, shape=(BATCH_SIZE, HEIGHT, WIDTH, 3), name='img_inp')
pcl_gt = tf.placeholder(tf.float32, shape=(BATCH_SIZE, NUM_POINTS, 3), name='pcl_gt')
az_inp = tf.placeholder(tf.float32, shape=(BATCH_SIZE), name='az_inp')
# Generate Prediction
with tf.variable_scope('psgn_vars'):
z_mean, z_log_sigma_sq = image_encoder(img_inp, FLAGS)
z_sigma = tf.sqrt(tf.exp(z_log_sigma_sq))
eps = tf.random_normal(tf.shape(z_mean), 0, 1, dtype=tf.float32)
z_latent_img = z_mean + z_sigma * eps
bneck_size = FLAGS.bottleneck
with tf.variable_scope('pointnet_ae') as scope:
z_latent_pcl = encoder_with_convs_and_symmetry(in_signal=pcl_gt, n_filters=[64,128,128,256,bneck_size],
filter_sizes=[1],
strides=[1],
b_norm=True,
verbose=True,
scope=scope,
plm=True
)
out_pcl = decoder_with_fc_only(z_latent_pcl, layer_sizes=[256,256,np.prod([NUM_POINTS, 3])],
b_norm=FLAGS.bn_decoder,
b_norm_finish=False,
verbose=True,
scope=scope
)
# Point cloud reconstructed from gt point cloud using AE
reconstr_pcl = tf.reshape(out_pcl, (BATCH_SIZE, NUM_POINTS, 3))
scope.reuse_variables()
out_img = decoder_with_fc_only(z_latent_img, layer_sizes=[256,256,np.prod([NUM_POINTS, 3])],
b_norm=FLAGS.bn_decoder,
b_norm_finish=False,
verbose=True,
scope=scope
)
# Point cloud reconstructed from input RGB image using variational latent matching network and fixed decoder from AE
reconstr_img = tf.reshape(out_img, (BATCH_SIZE, NUM_POINTS, 3))
# Calculate Chamfer Metrics reconstr_img <-> pcl_gt
dists_forward_rimg, dists_backward_rimg, chamfer_distance_rimg = [tf.reduce_mean(metric) for metric in get_chamfer_metrics(pcl_gt, reconstr_img)]
# Calculate Chamfer Metrics reconstr_img_scaled <-> pcl_gt_scaled
pcl_gt_scaled, reconstr_img_scaled = scale(pcl_gt, reconstr_img)
dists_forward_rimg_scaled, dists_backward_rimg_scaled, chamfer_distance_rimg_scaled = [tf.reduce_mean(metric) for metric in get_chamfer_metrics(pcl_gt_scaled, reconstr_img_scaled)]
# L1 Distance between latent representations
L1 = tf.reduce_mean(tf.abs(z_latent_pcl - z_latent_img))
# L2 Distance between latent representations
L2 = tf.reduce_mean((z_latent_pcl - z_latent_img)**2)
# Regularization on eps on the basis of azimuth
z_alpha = get_alpha(az_inp, penalty_angle=FLAGS.penalty_angle)
# L_reg = tf.reduce_mean((z_sigma - z_alpha)**2)
L_reg = tf.reduce_mean((tf.reduce_mean(z_sigma, axis=-1) - z_alpha)**2)
# Define Loss to optimize on
if FLAGS.loss == 'l1':
loss = L1
elif FLAGS.loss == 'l2':
loss = L2
elif FLAGS.loss == 'chamfer':
loss = chamfer_distance_rimg
elif FLAGS.loss == 'vae':
loss = L2 + FLAGS.weight * L_reg
# Get Training Models
train_models, val_models, train_pair_indices, val_pair_indices = get_shapenet_models(FLAGS)
batches = len(train_pair_indices) / BATCH_SIZE
# Get training vars and pointnet_ae vars
train_vars = [var for var in tf.global_variables() if 'psgn' in var.name]
pointnet_ae_vars = [var for var in tf.global_variables() if 'pointnet_ae' in var.name]
optim = tf.train.AdamOptimizer(FLAGS.lr, beta1=0.9).minimize(loss, var_list=train_vars)
start_epoch = 0
max_epoch = FLAGS.max_epoch
# Define Log Directories
snapshot_folder = join(FLAGS.exp, 'snapshots')
best_folder = join(FLAGS.exp, 'best')
logs_folder = join(FLAGS.exp, 'logs')
pointnet_ae_logs_path = FLAGS.ae_logs
# Define Savers
saver = tf.train.Saver(max_to_keep=2)
# Define Summary Variables
ph_dists_forward = tf.placeholder(tf.float32, name='dists_forward')
ph_dists_backward = tf.placeholder(tf.float32, name='dists_backward')
ph_dists_chamfer = tf.placeholder(tf.float32, name='dists_chamfer')
ph_l1 = tf.placeholder(tf.float32, name='l1')
ph_l2 = tf.placeholder(tf.float32, name='l2')
ph_lreg = tf.placeholder(tf.float32, name='lreg')
ph_loss = tf.placeholder(tf.float32, name='loss')
ph_summary = [ph_dists_forward, ph_dists_backward, ph_dists_chamfer, \
ph_l1, ph_l2, ph_lreg, ph_loss]
merged_summ = get_summary(ph_summary)
# Create log directories
create_folders([snapshot_folder, logs_folder, join(snapshot_folder, 'best'), best_folder])
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
train_writer = tf.summary.FileWriter(logs_folder+'/train', sess.graph_def)
val_writer = tf.summary.FileWriter(logs_folder+'/val', sess.graph_def)
sess.run(tf.global_variables_initializer())
# Load pretrained frozen pointnet ae weights
load_pointnet_ae(pointnet_ae_logs_path, pointnet_ae_vars, sess, FLAGS)
# Load previous checkpoint
start_epoch = load_previous_checkpoint(snapshot_folder, saver, sess)
best_val_loss = 10000000
since = time.time()
print '*'*30,'\n','Training Started !!!\n', '*'*30
PRINT_N = FLAGS.print_n
if FLAGS.sanity_check:
random.shuffle(train_pair_indices)
from utils.show_3d import show3d_balls
for b in xrange(batches):
batch_ip, batch_gt, batch_az = fetch_batch(train_models, train_pair_indices, b, BATCH_SIZE)
result = sess.run(reconstr_pcl, feed_dict={pcl_gt:batch_gt})
for ind in xrange(BATCH_SIZE):
show3d_balls.showtwopoints(batch_gt[ind], result[ind], ballradius=3)
for i in xrange(start_epoch, max_epoch):
random.shuffle(train_pair_indices)
stats = {}
stats = reset_stats(ph_summary, stats)
iter_start = time.time()
for b in xrange(batches):
global_step = i*batches + b + 1
batch_ip, batch_gt, batch_az = fetch_batch(train_models, train_pair_indices, b, BATCH_SIZE)
runlist = [loss, L1, L2, L_reg, chamfer_distance_rimg, dists_forward_rimg, dists_backward_rimg, optim]
_l, _l1, _l2, _lreg, C, F, B, _ = sess.run(runlist, feed_dict={pcl_gt:batch_gt, img_inp:batch_ip, az_inp:batch_az})
_summary_losses = [F, B, C, _l1, _l2, _lreg, _l]
stats = update_stats(ph_summary, _summary_losses, stats, PRINT_N)
if global_step % PRINT_N == 0:
summ = sess.run(merged_summ, feed_dict=stats)
train_writer.add_summary(summ, global_step)
till_now = time.time() - iter_start
print 'Loss = {} Iter = {} Minibatch = {} Time:{:.0f}m {:.0f}s'.format(
stats[ph_loss], global_step, b, till_now//60, till_now%60
)
stats = reset_stats(ph_summary, stats)
iter_start = time.time()
print 'Saving Model ....................'
saver.save(sess, join(snapshot_folder, 'model'), global_step=i)
print '..................... Model Saved'
val_epoch_chamfer, val_epoch_forward, val_epoch_backward, val_summ = get_epoch_loss(val_models, val_pair_indices)
val_writer.add_summary(val_summ, global_step)
time_elapsed = time.time() - since
print '-'*65 + ' EPOCH ' + str(i) + ' ' + '-'*65
print 'Val Chamfer: {:.8f} Forward: {:.8f} Backward: {:.8f} Time:{:.0f}m {:.0f}s'.format(
val_epoch_chamfer, val_epoch_forward, val_epoch_backward, time_elapsed//60, time_elapsed%60
)
print '-'*140
print
if (val_epoch_chamfer < best_val_loss):
print 'Saving Best at Epoch %d ...............'%(i)
saver.save(sess, join(snapshot_folder, 'best', 'best'))
os.system('cp %s %s'%(join(snapshot_folder, 'best/*'), best_folder))
best_val_loss = val_epoch_chamfer
print '.............................Saved Best'