-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcountwords_groups.py
executable file
·324 lines (264 loc) · 9.96 KB
/
countwords_groups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/env python
##########################################################################
# #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation; version 2 of the License. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# #
##########################################################################
from lxml import etree
from bz2 import BZ2File
import sys
from functools import partial
import logging
from collections import Counter
#logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
try:
import re2 as re
except ImportError:
logging.warn("pyre2 not available. It's gonna be a long job")
import re
## multiprocessing
from multiprocessing import Pipe, Process
from sonet.graph import load as sg_load
from sonet import lib
import sonet.mediawiki as mwlib
## nltk
import nltk
count_utp, count_missing = 0, 0
lang_user, lang_user_talk = None, None
tag = {}
en_user, en_user_talk = u"User", u"User talk"
user_classes = None
### CHILD PROCESS
# smile dictionary
dsmile = {
'happy': (r':-?[)\]>]', r'=[)\]]', r'\^[_\-.]?\^', 'x\)', r'\(^_^\)'),
'sad': (r':-?[(\[<]', r'=[(\[]'),
'laugh': (r':[ -]?D',),
'tongue': (':-?[pP]', '=[pP]',),
'normal': (r':-?\|',),
'cool': (r'8-?\)',),
}
def build_smile_re(dsmile):
out = {}
for name, lsmile in dsmile.items():
out[name] = re.compile(r'(?: %s)' % (r'| '.join(lsmile)))
#print name, r'(?:\s%s)' % (r'|\s'.join(lsmile))
return out
re_smile = build_smile_re(dsmile)
## r argument is just for caching
def remove_templates(text, r=re.compile(r"{{.*?}}")):
"""
Remove Mediawiki templates from given text:
>>> remove_templates("hello{{template}} world")
'hello world'
>>> remove_templates("hello{{template}} world{{template2}}")
'hello world'
"""
return r.sub("", text)
## dsmile argument is just for caching
def find_smiles(text):
"""
Find smiles in text and returns a dictionary of found smiles
>>> find_smiles(':) ^^')
{'happy': 1}
>>> find_smiles(' ^^')
{'happy': 1}
>>> find_smiles(' :|')
{'normal': 1}
"""
res = {}
for name, regex in re_smile.items():
matches = len([1 for match in regex.findall(text) if match])
# uncomment this to print smiles with context
##for match in regex.finditer(text):
## print 'sonetsmile: ', text[max(0, \
## match.start()-15):match.end()+15]
if matches:
res[name] = matches
return res
def get_freq_dist(recv, send, fd=None, dcount_smile=None, classes=None):
"""
Find word frequency distribution and count smile in the given text.
Parameters
----------
recv : multiprocessing.Connection
Read only
send : multiprocessing.Connection
Write only
fd : dict
Word frequency distributions
dcount_smile : dict
Smile counters
"""
from operator import itemgetter
stopwords = frozenset(
nltk.corpus.stopwords.words('italian')
).union(
frozenset("[]':,(){}.?!*\"")
).union(
frozenset(("==", "--"))
)
tokenizer = nltk.PunktWordTokenizer()
if not classes:
classes = ('anonymous', 'bot', 'bureaucrat', 'sysop', 'normal user',
'all')
# prepare a dict of empty Counter, one for every class
if not fd:
fd = {cls: Counter() for cls in classes}
if not dcount_smile:
dcount_smile = {cls: Counter() for cls in classes}
while 1:
try:
cls, msg = recv.recv()
except TypeError: ## end
for cls in set(classes).difference(('all',)):
fd['all'].update(fd[cls])
dcount_smile['all'].update(dcount_smile[cls])
# send word counters to the main process
send.send([(cls, sorted(freq.items(),
key=itemgetter(1),
reverse=True)[:1000])
for cls, freq in fd.iteritems()])
# send smile counters to the main process
send.send([(cls, sorted(counters.items(),
key=itemgetter(1),
reverse=True))
for cls, counters in dcount_smile.iteritems()])
return
msg = remove_templates(msg.encode('utf-8'))
count_smile = find_smiles(msg)
dcount_smile[cls].update(count_smile)
tokens = tokenizer.tokenize(nltk.clean_html(msg.lower()))
tokens = [t for t in tokens if t not in stopwords]
fd[cls].update(tokens)
#import cProfile as profile
#def get_freq_dist_wrapper(recv, send, fd=None, dcount_smile=None, classes=None):
# profile.runctx("get_freq_dist(recv, send, dcount_smile, classes)",
# globals(), locals(), 'profile')
### MAIN PROCESS
def get_class(g, cls):
if cls == 'all':
users = g.g.vs
elif cls == 'normal user':
users = g.g.vs.select(**{'bot_ne': True, 'anonymous_ne': True,
'sysop_ne': True,
'bureaucrat_ne': True})
else:
users = g.g.vs.select(**{cls: True})
return users
def process_page(elem, send):
"""
send is a Pipe connection, write only
"""
user = None
global count_utp, count_missing
for child in elem:
if child.tag == tag['title'] and child.text:
title = child.text
try:
user = mwlib.username_from_utp(title,
(en_user_talk, lang_user_talk))
except ValueError:
return
elif child.tag == tag['revision']:
for rc in child:
if rc.tag != tag['text']:
continue
#assert user, "User still not defined"
if not (rc.text and user):
continue
user = user.encode('utf-8')
try:
send.send((user_classes[user], rc.text))
except KeyError:
## fix for anonymous users not in the rich file
if mwlib.isip(user):
send.send(('anonymous', rc.text))
else:
logging.warn("Exception with user %s", user)
count_missing += 1
count_utp += 1
if not count_utp % 500:
print >> sys.stderr, count_utp
def main():
import optparse
p = optparse.OptionParser(
usage="usage: %prog [options] dump enriched_pickle"
)
_, args = p.parse_args()
if len(args) != 2:
p.error("Too few or too many arguments")
xml, rich_fn = args
global lang_user_talk, lang_user, tag, user_classes
## pipe to send data to the subprocess
p_receiver, p_sender = Pipe(duplex=False)
## pipe to get elaborated data from the subprocess
done_p_receiver, done_p_sender = Pipe(duplex=False)
src = BZ2File(xml)
tag = mwlib.get_tags(src)
lang, date, _ = mwlib.explode_dump_filename(xml)
g = sg_load(rich_fn)
user_classes = dict(g.get_user_class('username',
('anonymous', 'bot', 'bureaucrat','sysop')))
p = Process(target=get_freq_dist, args=(p_receiver, done_p_sender))
p.start()
translations = mwlib.get_translations(src)
lang_user, lang_user_talk = translations['User'], translations['User talk']
assert lang_user, "User namespace not found"
assert lang_user_talk, "User Talk namespace not found"
## open with a faster decompressor (but that probably cannot seek)
src.close()
src = lib.BZ2FileExt(xml, parallel=False)
partial_process_page = partial(process_page, send=p_sender)
mwlib.fast_iter(etree.iterparse(src, tag=tag['page']),
partial_process_page)
logging.info('Users missing in the rich file: %d', count_missing)
p_sender.send(0) ## this STOPS the process
print >> sys.stderr, "end of parsing"
## SAVE DATA
g.set_weighted_degree()
users_cache = {}
# get a list of pair (class name, frequency distributions)
for cls, fd in done_p_receiver.recv():
with open("%swiki-%s-words-%s.dat" %
(lang, date,
cls.replace(' ', '_')), 'w') as out:
# users in this group
try:
users = users_cache[cls]
except KeyError:
users = get_class(g, cls)
users_cache[cls] = users
print >> out, '#users: ', len(users)
print >> out, '#msgs: ', sum(users['weighted_indegree'])
for k, v in fd:
print >> out, v, k
del fd
for cls, counters in done_p_receiver.recv():
with open("%swiki-%s-smile-%s.dat" %
(lang, date,
cls.replace(' ', '_')), 'w') as out:
# users in this group
try:
users = users_cache[cls]
except KeyError:
users = get_class(g, cls)
users_cache[cls] = users
print >> out, '#users: ', len(users)
print >> out, '#msgs: ', sum(users['weighted_indegree'])
for k, v in counters:
print >> out, v, k
del fd
p.join()
print >> sys.stderr, "end of FreqDist"
if __name__ == "__main__":
#import cProfile as profile
#profile.run('main()', 'mainprof')
main()