-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathsocial_data_loader.py
380 lines (317 loc) · 15.4 KB
/
social_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import matplotlib.pyplot as plt
import os
from os.path import join as pjoin
import numpy as np
import datetime
import pickle
import pandas
import itertools
import torch
import torch.utils
from data_loader import EventsDataset
class SocialEvolutionDataset(EventsDataset):
'''
Class to load batches for training and testing
'''
FIRST_DATE = datetime.datetime(2008, 9, 11) # consider events starting from this time
EVENT_TYPES = ['SMS', 'Proximity', 'Calls']
def __init__(self,
subj_features,
data,
MainAssociation,
data_train=None,
verbose=False):
super(SocialEvolutionDataset, self).__init__()
self.subj_features = subj_features
self.data = data
self.verbose = verbose
self.all_events = []
self.event_types_num = {}
self.time_bar = None
self.MainAssociation = MainAssociation
self.TEST_TIMESLOTS = [datetime.datetime(2009, 5, 10), datetime.datetime(2009, 5, 20), datetime.datetime(2009, 5, 31),
datetime.datetime(2009, 6, 10), datetime.datetime(2009, 6, 20), datetime.datetime(2009, 6, 30)]
self.FIRST_DATE = SocialEvolutionDataset.FIRST_DATE
self.event_types = SocialEvolutionDataset.EVENT_TYPES
k = 1 # k >= 1 for communication events
print(data.split.upper())
for t in self.event_types:
print('Event type={}, k={}, number of events={}'.format(t, k, len(data.EVENT_TYPES[t].tuples)))
events = list(filter(lambda x: x[3].toordinal() >= self.FIRST_DATE.toordinal(),
data.EVENT_TYPES[t].tuples))
self.all_events.extend(events)
self.event_types_num[t] = k
k += 1
n = len(self.all_events)
self.N_nodes = subj_features.shape[0]
if data.split == 'train':
Adj_all, keys, Adj_all_last = self.get_Adjacency()
if self.verbose:
print('initial and final associations', self.MainAssociation, Adj_all.sum(), Adj_all_last.sum(),
np.allclose(Adj_all, Adj_all_last))
# Initial topology
if len(list(data.Adj.keys())) > 0:
keys = sorted(list(data.Adj[list(data.Adj.keys())[0]].keys())) # relation keys
keys.remove(MainAssociation)
keys = [MainAssociation] + keys # to make sure CloseFriend goes first
k = 0 # k <= 0 for association events
for rel in keys:
if rel != MainAssociation:
continue
if data_train is None:
date = sorted(list(data.Adj.keys()))[0] # first date
Adj_prev = data.Adj[date][rel]
else:
date = sorted(list(data_train.Adj.keys()))[-1] # last date of the training set
Adj_prev = data_train.Adj[date][rel]
self.event_types_num[rel] = k
N = Adj_prev.shape[0]
# Associative events
for date_id, date in enumerate(sorted(list(data.Adj.keys()))): # start from the second survey
if date.toordinal() >= self.FIRST_DATE.toordinal():
# for rel_id, rel in enumerate(sorted(list(dygraphs.Adj[date].keys()))):
assert data.Adj[date][rel].shape[0] == N
for u in range(N):
for v in range(u + 1, N):
# if two nodes become friends, add the event
if data.Adj[date][rel][u, v] > 0 and Adj_prev[u, v] == 0:
assert u != v, (u, v, k)
self.all_events.append((u, v, rel, date))
Adj_prev = data.Adj[date][rel]
# print(data.split, rel, len(self.all_events) - n)
print('Event type={}, k={}, number of events={}'.format(rel, k, len(self.all_events) - n))
n = len(self.all_events)
k -= 1
self.all_events = sorted(self.all_events, key=lambda x: int(x[3].timestamp()))
if self.verbose:
print('%d events' % len(self.all_events))
print('last 10 events:')
for event in self.all_events[-10:]:
print(event)
self.n_events = len(self.all_events)
H_train = np.zeros((N, N))
c = 0
for e in self.all_events:
H_train[e[0], e[1]] += 1
H_train[e[1], e[0]] += 1
c += 1
if self.verbose:
print('H_train', c, H_train.max(), H_train.min(), H_train.std())
self.H_train = H_train
@staticmethod
def load_data(data_dir, prob, dump=True):
data_file = pjoin(data_dir, 'data_prob%s.pkl' % prob)
if os.path.isfile(data_file):
print('loading data from %s' % data_file)
with open(data_file, 'rb') as f:
data = pickle.load(f)
else:
data = {'initial_embeddings': SubjectsReader(pjoin(data_dir, 'Subjects.csv')).features_onehot}
for split in ['train', 'test']:
data.update(
{split: SocialEvolution(data_dir, split=split, MIN_EVENT_PROB=prob)})
if dump:
# dump data files to avoid their generation again
print('saving data to %s' % data_file)
with open(data_file, 'wb') as f:
pickle.dump(data, f, protocol=2) # for compatibility
return data
def get_Adjacency(self, multirelations=False):
dates = sorted(list(self.data.Adj.keys()))
Adj_all = self.data.Adj[dates[0]]
Adj_all_last = self.data.Adj[dates[-1]]
# Adj_friends = Adj_all[self.MainAssociation].copy()
if multirelations:
keys = sorted(list(Adj_all.keys()))
keys.remove(self.MainAssociation)
keys = [self.MainAssociation] + keys # to make sure CloseFriend goes first
Adj_all = np.stack([Adj_all[rel].copy() for rel in keys], axis=2)
Adj_all_last = np.stack([Adj_all_last[rel].copy() for rel in keys], axis=2)
else:
keys = [self.MainAssociation]
Adj_all = Adj_all[self.MainAssociation].copy()
Adj_all_last = Adj_all_last[self.MainAssociation].copy()
return Adj_all, keys, Adj_all_last
def time_to_onehot(self, d):
x = []
for t, max_t in [(d.weekday(), 7), (d.hour, 24), (d.minute, 60), (d.second, 60)]:
x_t = np.zeros(max_t)
x_t[t] = 1
x.append(x_t)
return np.concatenate(x)
class CSVReader:
'''
General class to read any relationship csv in this dataset
'''
def __init__(self,
csv_path,
split, # 'train', 'test', 'all'
MIN_EVENT_PROB,
event_type=None,
N_subjects=None,
test_slot=1):
self.csv_path = csv_path
print(os.path.basename(csv_path))
if split == 'train':
time_start = 0
time_end = datetime.datetime(2009, 4, 30).toordinal()
elif split == 'test':
if test_slot != 1:
raise NotImplementedError('test on time slot 1 for now')
time_start = datetime.datetime(2009, 5, 1).toordinal()
time_end = datetime.datetime(2009, 6, 30).toordinal()
else:
time_start = 0
time_end = np.Inf
csv = pandas.read_csv(csv_path)
self.data = {}
to_date1 = lambda s: datetime.datetime.strptime(s, '%Y-%m-%d')
to_date2 = lambda s: datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%S')
user_columns = list(filter(lambda c: c.find('user') >= 0 or c.find('id') >= 0, list(csv.keys())))
assert len(user_columns) == 2, (list(csv.keys()), user_columns)
self.time_column = list(filter(lambda c: c.find('time') >= 0 or c.find('date') >= 0, list(csv.keys())))
assert len(self.time_column) == 1, (list(csv.keys()), self.time_column)
self.time_column = self.time_column[0]
self.prob_column = list(filter(lambda c: c.find('prob') >= 0, list(csv.keys())))
for column in list(csv.keys()):
values = csv[column].tolist()
for fn in [int, float, to_date1, to_date2]:
try:
values = list(map(fn, values))
break
except Exception as e:
continue
self.data[column] = values
n_rows = len(self.data[self.time_column])
time_stamp_days = np.array([d.toordinal() for d in self.data[self.time_column]], dtype=np.int)
# skip data where one of users is missing (nan) or interacting with itself or timestamp not in range
conditions = [~np.isnan(self.data[user_columns[0]]),
~np.isnan(self.data[user_columns[1]]),
np.array(self.data[user_columns[0]]) != np.array(self.data[user_columns[1]]),
time_stamp_days >= time_start,
time_stamp_days <= time_end]
if len(self.prob_column) == 1:
print(split, event_type, self.prob_column)
# skip data if the probability of event is 0 or nan (available for some event types)
conditions.append(np.nan_to_num(np.array(self.data[self.prob_column[0]])) > MIN_EVENT_PROB)
valid_ids = np.ones(n_rows, dtype=np.bool)
for cond in conditions:
valid_ids = valid_ids & cond
self.valid_ids = np.where(valid_ids)[0]
time_stamps_sec = [self.data[self.time_column][i].timestamp() for i in self.valid_ids]
self.valid_ids = self.valid_ids[np.argsort(time_stamps_sec)]
print(split, len(self.valid_ids), n_rows)
for column in list(csv.keys()):
values = csv[column].tolist()
key = column + '_unique'
for fn in [int, float, to_date1, to_date2]:
try:
values = list(map(fn, values))
break
except Exception as e:
continue
self.data[column] = values
values_valid = [values[i] for i in self.valid_ids]
self.data[key] = np.unique(values_valid)
print(key, type(values[0]), len(self.data[key]), self.data[key])
self.subjects, self.time_stamps = [], []
for usr_col in range(len(user_columns)):
self.subjects.extend([self.data[user_columns[usr_col]][i] for i in self.valid_ids])
self.time_stamps.extend([self.data[self.time_column][i] for i in self.valid_ids])
# set O={(u, v, k, t)}
self.tuples = []
if N_subjects is not None:
# Compute frequency of communcation between users
print('user_columns', user_columns)
self.Adj = np.zeros((N_subjects, N_subjects))
for row in self.valid_ids:
subj1 = self.data[user_columns[0]][row]
subj2 = self.data[user_columns[1]][row]
assert subj1 != subj2, (subj1, subj2)
assert subj1 > 0 and subj2 > 0, (subj1, subj2)
try:
self.Adj[int(subj1) - 1, int(subj2) - 1] += 1
self.Adj[int(subj2) - 1, int(subj1) - 1] += 1
except:
print(subj1, subj2)
raise
self.tuples.append((int(subj1) - 1,
int(subj2) - 1,
event_type,
self.data[self.time_column][row]))
n1 = len(self.tuples)
self.tuples = list(set(itertools.chain(self.tuples)))
self.tuples = sorted(self.tuples, key=lambda t: t[3].timestamp())
n2 = len(self.tuples)
print('%d/%d duplicates removed' % (n1 - n2, n1))
class SubjectsReader:
'''
Class to read Subjects.csv in this dataset
'''
def __init__(self,
csv_path):
self.csv_path = csv_path
print(os.path.basename(csv_path))
csv = pandas.read_csv(csv_path)
subjects = csv[list(filter(lambda column: column.find('user') >= 0, list(csv.keys())))[0]].tolist()
print('Number of subjects', len(subjects))
features = []
for column in list(csv.keys()):
if column.find('user') >= 0:
continue
values = list(map(str, csv[column].tolist()))
features_unique = np.unique(values)
features_onehot = np.zeros((len(subjects), len(features_unique)))
for subj, feat in enumerate(values):
ind = np.where(features_unique == feat)[0]
assert len(ind) == 1, (ind, features_unique, feat, type(feat))
features_onehot[subj, ind[0]] = 1
features.append(features_onehot)
features_onehot = np.concatenate(features, axis=1)
print('features', features_onehot.shape)
self.features_onehot = features_onehot
class SocialEvolution():
'''
Class to read all csv in this dataset
'''
def __init__(self,
data_dir,
split,
MIN_EVENT_PROB):
self.data_dir = data_dir
self.split = split
self.MIN_EVENT_PROB = MIN_EVENT_PROB
self.relations = CSVReader(pjoin(data_dir, 'RelationshipsFromSurveys.csv'), split=split, MIN_EVENT_PROB=MIN_EVENT_PROB)
self.relations.subject_ids = np.unique(self.relations.data['id.A'] + self.relations.data['id.B'])
self.N_subjects = len(self.relations.subject_ids)
print('Number of subjects', self.N_subjects)
# Read communicative events
self.EVENT_TYPES = {}
for t in SocialEvolutionDataset.EVENT_TYPES:
self.EVENT_TYPES[t] = CSVReader(pjoin(data_dir, '%s.csv' % t),
split=split,
MIN_EVENT_PROB=MIN_EVENT_PROB,
event_type=t,
N_subjects=self.N_subjects)
# Compute adjacency matrices for associative relationship data
self.Adj = {}
dates = self.relations.data['survey.date']
rels = self.relations.data['relationship']
for date_id, date in enumerate(self.relations.data['survey.date_unique']):
self.Adj[date] = {}
ind = np.where(np.array([d == date for d in dates]))[0]
for rel_id, rel in enumerate(self.relations.data['relationship_unique']):
ind_rel = np.where(np.array([r == rel for r in [rels[i] for i in ind]]))[0]
A = np.zeros((self.N_subjects, self.N_subjects))
for j in ind_rel:
row = ind[j]
A[self.relations.data['id.A'][row] - 1, self.relations.data['id.B'][row] - 1] = 1
A[self.relations.data['id.B'][row] - 1, self.relations.data['id.A'][row] - 1] = 1
self.Adj[date][rel] = A
# sanity check
for row in range(len(dates)):
if rels[row] == rel and dates[row] == date:
assert self.Adj[dates[row]][rels[row]][
self.relations.data['id.A'][row] - 1, self.relations.data['id.B'][row] - 1] == 1
assert self.Adj[dates[row]][rels[row]][
self.relations.data['id.B'][row] - 1, self.relations.data['id.A'][row] - 1] == 1