-
Notifications
You must be signed in to change notification settings - Fork 23
/
main.py
473 lines (393 loc) · 21.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import numpy as np
import sys
import os
import time
import copy
import datetime
import pickle
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import argparse
import platform
import subprocess
from sklearn.metrics import roc_auc_score, average_precision_score
from social_data_loader import SocialEvolutionDataset
from github_data_loader import GithubDataset
from example_data_loader import ExampleDataset
from utils import *
from dyrep import DyRep
from freq import FreqBaseline
def load_checkpoint(file):
# TODO: Loading the checkpoint stopped working, need to fix.
print('loading the model')
state = torch.load(file)
pos1 = file.find('checkpoint_dygraphs')
experiment_ID = str.join('_', file[pos1:].split('_')[2:-2])
model.load_state_dict(state['state_dict'])
optimizer.load_state_dict(state['optimizer'])
scheduler.load_state_dict(state['scheduler'])
model.Lambda_dict = state['Lambda_dict']
model.time_keys = state['time_keys']
print('loading from epoch %d, batch %d done' % (state['epoch'], state['batch_idx']))
return state['epoch'], state['batch_idx'], state['time_bar'], state['node_degree_global'], experiment_ID
def save_checkpoint(batch_idx, epoch):
try:
fname = '%s/checkpoints/checkpoint_dygraphs_%s_epoch%d_batch%d.pth.tar' % (args.results, experiment_ID, epoch, batch_idx)
state = {
'epoch': epoch,
'batch_idx': batch_idx,
'args': args,
'time_bar': time_bar,
'node_degree_global': node_degree_global,
'Lambda_dict': model.Lambda_dict,
'time_keys': model.time_keys,
'state_dict': model.state_dict(),
'scheduler': scheduler.state_dict(),
'optimizer': optimizer.state_dict(),
}
if os.path.isfile(fname):
print('WARNING: file %s exists and will be overwritten' % fname)
torch.save(state, fname)
print('the model is saved to %s' % fname)
except Exception as e:
print('error saving the model', e)
def test(model, n_test_batches=10, epoch=0):
model.eval()
loss = 0
losses =[ [np.Inf, 0], [np.Inf, 0] ]
n_samples = 0
# Time slots with 10 days intervals as in the DyRep paper
timeslots = [t.toordinal() for t in test_loader.dataset.TEST_TIMESLOTS]
event_types = list(test_loader.dataset.event_types_num.keys()) #['comm', 'assoc']
# sort it by k
for event_t in test_loader.dataset.event_types_num:
event_types[test_loader.dataset.event_types_num[event_t]] = event_t
event_types += ['Com']
mar, hits_10 = {}, {}
for event_t in event_types:
mar[event_t] = []
hits_10[event_t] = []
for c, slot in enumerate(timeslots):
mar[event_t].append([])
hits_10[event_t].append([])
start = time.time()
with torch.no_grad():
for batch_idx, data in enumerate(test_loader):
data[2] = data[2].float().to(args.device)
data[4] = data[4].double().to(args.device)
data[5] = data[5].double()
output = model(data)
loss += (-torch.sum(torch.log(output[0]) + 1e-10) + torch.sum(output[1])).item()
for i in range(len(losses)):
m1 = output[i].min()
m2 = output[i].max()
if m1 < losses[i][0]:
losses[i][0] = m1
if m2 > losses[i][1]:
losses[i][1] = m2
n_samples += 1
A_pred, Survival_term = output[2]
u, v, k = data[0], data[1], data[3]
time_cur = data[5]
m, h = MAR(A_pred, u, v, k, Survival_term=Survival_term, freq_prior=freq.H_train_norm if args.freq else None)
assert len(time_cur) == len(m) == len(h) == len(k)
for t, m, h, k_ in zip(time_cur, m, h, k):
d = datetime.datetime.fromtimestamp(t.item()).toordinal()
event_t = event_types[k_.item()]
for c, slot in enumerate(timeslots):
if d <= slot:
mar[event_t][c].append(m)
hits_10[event_t][c].append(h)
if k_ > 0:
mar['Com'][c].append(m)
hits_10['Com'][c].append(h)
if c > 0:
assert slot > timeslots[c-1] and d > timeslots[c-1], (d, slot, timeslots[c-1])
break
if batch_idx % 10 == 0 and args.verbose:
print('test', batch_idx)
if n_test_batches is not None and batch_idx >= n_test_batches - 1:
break
time_iter = time.time() - start
print('\nTEST batch={}/{}, loss={:.3f}, psi={}, loss1 min/max={:.4f}/{:.4f}, '
'loss2 min/max={:.4f}/{:.4f}, integral time stamps={}, sec/iter={:.4f}'.
format(batch_idx + 1, len(test_loader), (loss / n_samples),
[model.psi[c].item() for c in range(len(model.psi))],
losses[0][0], losses[0][1], losses[1][0], losses[1][1],
len(model.Lambda_dict), time_iter / (batch_idx + 1)))
# Report results for different time slots in the test set
if args.verbose:
for c, slot in enumerate(timeslots):
s = 'Slot {}: '.format(c)
for event_t in event_types:
sfx = '' if event_t == event_types[-1] else ', '
if len(mar[event_t][c]) > 0:
s += '{} ({} events): MAR={:.2f}+-{:.2f}, HITS_10={:.3f}+-{:.3f}'.\
format(event_t, len(mar[event_t][c]), np.mean(mar[event_t][c]), np.std(mar[event_t][c]),
np.mean(hits_10[event_t][c]), np.std(hits_10[event_t][c]))
else:
s += '{} (no events)'.format(event_t)
s += sfx
print(s)
mar_all, hits_10_all = {}, {}
for event_t in event_types:
mar_all[event_t] = []
hits_10_all[event_t] = []
for c, slot in enumerate(timeslots):
mar_all[event_t].extend(mar[event_t][c])
hits_10_all[event_t].extend(hits_10[event_t][c])
s = 'Epoch {}: results per event type for all test time slots: \n'.format(epoch)
print(''.join(['-']*100))
for event_t in event_types:
if len(mar_all[event_t]) > 0:
s += '====== {:10s}\t ({:7s} events): \tMAR={:.2f}+-{:.2f}\t HITS_10={:.3f}+-{:.3f}'.\
format(event_t, str(len(mar_all[event_t])), np.mean(mar_all[event_t]), np.std(mar_all[event_t]),
np.mean(hits_10_all[event_t]), np.std(hits_10_all[event_t]))
else:
s += '====== {:10s}\t (no events)'.format(event_t)
if event_t != event_types[-1]:
s += '\n'
print(s)
print(''.join(['-'] * 100))
return mar_all, hits_10_all, loss / n_samples
def get_temporal_variables():
variables = {}
variables['time_bar'] = copy.deepcopy(time_bar)
variables['node_degree_global'] = copy.deepcopy(node_degree_global)
variables['time_keys'] = copy.deepcopy(model.time_keys)
variables['z'] = model.z.clone()
variables['S'] = model.S.clone()
variables['A'] = model.A.clone()
variables['Lambda_dict'] = model.Lambda_dict.clone()
return variables
def set_temporal_variables(variables, model, train_loader, test_loader):
time_bar = copy.deepcopy(variables['time_bar'])
train_loader.dataset.time_bar = time_bar
test_loader.dataset.time_bar = time_bar
model.node_degree_global = copy.deepcopy(variables['node_degree_global'])
model.time_keys = copy.deepcopy(variables['time_keys'])
model.z = variables['z'].clone()
model.S = variables['S'].clone()
model.A = variables['A'].clone()
model.Lambda_dict = variables['Lambda_dict'].clone()
return time_bar
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DyGraphs Training Parameters')
parser.add_argument('--data_dir', type=str, default='./')
parser.add_argument('--dataset', type=str, default='social', choices=['social', 'github', 'example'])
parser.add_argument('--prob', default=0.8, help='filter events by this probability value in the Social Evolution data')
parser.add_argument('--batch_size', type=int, default=200, help='batch size (sequence length)')
parser.add_argument('--n_hid', type=int, default=32, help='hidden layer size')
parser.add_argument('--epochs', type=int, default=5, help='number of epochs')
parser.add_argument('--seed', type=int, default=1111, help='random seed')
parser.add_argument('--lr', type=float, default=0.0002, help='Learning Rate')
parser.add_argument('--lr_decay_step', type=str, default='10',
help='number of epochs after which to reduce learning rate')
parser.add_argument('--weight', type=float, default=1, help='weight for the second term in the loss')
parser.add_argument('--wdecay', type=float, default=0, help='weight decay')
parser.add_argument('--model', type=str, default='dyrep', help='trained model', choices=['dyrep', 'gcn', 'gat'])
parser.add_argument('--bilinear', action='store_true', default=False, help='use bilinear intensity (omega) model')
parser.add_argument('--bilinear_enc', action='store_true', default=False, help='use bilinear NRI')
parser.add_argument('--encoder', type=str, default=None, choices=['linear', 'mlp', 'mlp1', 'rand'])
parser.add_argument('--sparse', action='store_true', default=False,
help='sparsity prior as in some tasks in Kipf et al., ICML 2018')
parser.add_argument('--n_rel', type=int, default=2, help='number of edges for learned graphs')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--association', type=str, default='CloseFriend', help='The long term graph of the Social Evolution data used as long term edges')
parser.add_argument('--resume', type=str, default='')
parser.add_argument('--log_interval', type=int, default=20, help='print interval')
parser.add_argument('--results', type=str, default='results', help='results file path')
parser.add_argument('--soft_attn', action='store_true', default=False)
parser.add_argument('--freq', action='store_true', default=False, help='use the Frequency bias')
parser.add_argument('--verbose', action='store_true', default=False, help='print a lot of debugging stuff and results details')
args = parser.parse_args()
args.lr_decay_step = list(map(int, args.lr_decay_step.split(',')))
args.torch = torch.__version__
print('\n~~~~~ Script arguments ~~~~~')
for arg in vars(args):
print(arg, getattr(args, arg))
dt = datetime.datetime.now()
print('start time:', dt)
experiment_ID = '%s_%06d' % (platform.node(), dt.microsecond)
print('experiment_ID: ', experiment_ID)
try:
gitcommit = subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD']).decode('ascii').strip()
print('gitcommit', gitcommit, '\n')
except Exception as e:
print('gitcommit is not available', e)
# Set seed
np.random.seed(args.seed)
rnd = np.random.RandomState(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.dataset == 'social':
try:
data = SocialEvolutionDataset.load_data(args.data_dir, args.prob)
except FileNotFoundError as e:
raise ValueError('Original nor preprocessed data not found. Please consult README.md to prepare data before running the code. Error:', e)
train_set = SocialEvolutionDataset(data['initial_embeddings'], data['train'], args.association, verbose=args.verbose)
test_set = SocialEvolutionDataset(data['initial_embeddings'], data['test'], args.association,
data_train=data['train'], verbose=args.verbose)
initial_embeddings = data['initial_embeddings'].copy()
A_initial = train_set.get_Adjacency()[0]
elif args.dataset == 'github':
train_set = GithubDataset('train', data_dir=args.data_dir)
test_set = GithubDataset('test', data_dir=args.data_dir)
initial_embeddings = np.random.randn(train_set.N_nodes, args.n_hid)
A_initial = train_set.get_Adjacency()[0]
elif args.dataset == 'example':
train_set = ExampleDataset('train')
test_set = ExampleDataset('test')
initial_embeddings = np.random.randn(train_set.N_nodes, args.n_hid)
A_initial = train_set.get_Adjacency()[0]
else:
raise NotImplementedError(args.dataset)
def initalize_state(dataset, keepS=False):
'''Initializes node embeddings and the graph to the original state after every epoch'''
Adj_all = dataset.get_Adjacency()[0]
if not isinstance(Adj_all, list):
Adj_all = [Adj_all]
node_degree_global = []
for rel, A in enumerate(Adj_all):
node_degree_global.append(np.zeros(A.shape[0]))
for u in range(A.shape[0]):
node_degree_global[rel][u] = np.sum(A[u])
Adj_all = Adj_all[0]
if args.verbose:
print('Adj_all', Adj_all.shape, len(node_degree_global), node_degree_global[0].min(), node_degree_global[0].max())
time_bar = np.zeros((dataset.N_nodes, 1)) + dataset.FIRST_DATE.timestamp()
model.initialize(node_embeddings=initial_embeddings,
A_initial=Adj_all, keepS=keepS) # train_loader.dataset.H_train
model.to(args.device)
return time_bar, node_degree_global
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False)
freq = FreqBaseline(train_set, test_set, verbose=args.verbose)
model = DyRep(node_embeddings=initial_embeddings,
N_nodes=train_set.N_nodes,
A_initial=A_initial,
n_hidden=args.n_hid,
bilinear=args.bilinear,
bilinear_enc=args.bilinear_enc,
sparse=args.sparse,
encoder=args.encoder,
n_rel=args.n_rel,
rnd=rnd,
device=args.device,
model=args.model,
soft_attn=args.soft_attn,
freq=freq.H_train_norm if args.freq else None,
verbose=args.verbose,
node_degree_global=None).to(args.device)
print('') # new string
if args.verbose:
print('model', model)
print('number of training parameters: %d' %
np.sum([np.prod(p.size()) if p.requires_grad else 0 for p in model.parameters()]))
params_main, params_enc = [], []
for name, param in model.named_parameters():
if name.find('encoder') >= 0 and param.requires_grad:
params_enc.append(param)
elif param.requires_grad:
params_main.append(param)
optimizer = optim.Adam([{"params": params_main, "weight_decay": args.wdecay},
{"params": params_enc, "weight_decay": 1e-4}], lr=args.lr, betas=(0.5, 0.999))
scheduler = lr_scheduler.MultiStepLR(optimizer, args.lr_decay_step, gamma=0.5)
if args.resume != '':
epoch_start, batch_start, time_bar, node_degree_global, experiment_ID = load_checkpoint(args.resume)
resume = True
model.node_degree_global = node_degree_global
else:
epoch_start = 1
batch_start = 0
resume = False
losses_events, losses_nonevents, losses_KL, losses_sum = [], [], [], []
test_MAR, test_HITS10, test_loss = [], [], []
print('\nStarting training...')
for epoch in range(epoch_start, args.epochs + 1):
if not (resume and epoch == epoch_start):
# Reinitialize node embeddings and adjacency matrices, but keep the model parameters intact
time_bar, node_degree_global = initalize_state(train_loader.dataset, keepS=epoch > 1)
model.node_degree_global = node_degree_global
train_loader.dataset.time_bar = time_bar
test_loader.dataset.time_bar = time_bar
start = time.time()
for batch_idx, data_batch in enumerate(train_loader):
if resume and batch_idx <= batch_start:
continue
model.train()
optimizer.zero_grad()
data_batch[2] = data_batch[2].float().to(args.device)
data_batch[4] = data_batch[4].double().to(args.device)
data_batch[5] = data_batch[5].double() # no need of GPU
output = model(data_batch)
losses = [-torch.sum(torch.log(output[0]) + 1e-10), args.weight * torch.sum(output[1])] #
# KL losses (one item per event)
if len(output[-1]) > 0:
losses.extend(output[-1])
losses_KL.append(torch.stack(losses[2:]).sum().item())
loss = torch.sum(torch.stack(losses)) / args.batch_size
loss.backward()
nn.utils.clip_grad_value_(model.parameters(), 100)
optimizer.step()
losses_events.append(losses[0].item())
losses_nonevents.append(losses[1].item())
losses_sum.append(loss.item())
assert np.allclose(train_loader.dataset.time_bar, time_bar)
assert np.allclose(test_loader.dataset.time_bar, time_bar)
model.psi.data = torch.clamp(model.psi.data, 1e-1, 1e+3) # to prevent overflow in computing Lambda
time_iter = time.time() - start
model.z = model.z.detach() # to reset the computational graph and avoid backpropagating second time
model.S = model.S.detach()
if (batch_idx + 1) % args.log_interval == 0 or batch_idx == len(train_loader) - 1:
# Report (intermediate) results
print('\nTRAIN epoch={}/{}, batch={}/{}, sec/iter: {:.4f}, loss={:.3f}, loss components: {}'.format(epoch,
args.epochs,
batch_idx + 1,
len(train_loader),
time_iter / (batch_idx + 1),
loss.item(), [l.item() for l in losses]))
if args.encoder is not None:
S = model.S.data.cpu().numpy()
S_batch = output[3].sum(axis=0)
A_all_first, keys, A_all_last = train_loader.dataset.get_Adjacency(multirelations=True)
for survey, A_all in zip(['first', 'last'], [A_all_first, A_all_last]):
for rel, key in enumerate(keys):
if len(A_all.shape) == 2:
A_all = A_all[:, :, None]
A = A_all[:, :, rel].flatten()
for edge_type in range(S.shape[2]):
prec = average_precision_score(y_true=A, y_score=S[:, :, edge_type].flatten())
acc = np.mean(np.equal(A, (S[:, :, edge_type].flatten() > 0).astype(np.float)))
auc = roc_auc_score(y_true=A, y_score=S[:, :, edge_type].flatten())
c = np.corrcoef(A.flatten(), S[:, :, edge_type].flatten())[0, 1]
prec_batch = average_precision_score(y_true=A, y_score=S_batch[:, :, edge_type].flatten())
acc_batch = np.mean(np.equal(A, (S_batch[:, :, edge_type].flatten() > 0).astype(np.float)))
auc_batch = roc_auc_score(y_true=A, y_score=S_batch[:, :, edge_type].flatten())
c_batch = np.corrcoef(A.flatten(), S_batch[:, :, edge_type].flatten())[0, 1]
print('{}: Edge {} with {}: acc={:.4f}, auc={:.4f}, prec={:.4f}, corr={:.4f}, '
'acc_batch={:.4f}, auc_batch={:.4f}, prec_batch={:.4f}, corr_batch={:.4f}'.
format(survey, edge_type, key, acc, auc, prec, c,
acc_batch, auc_batch, prec_batch, c_batch))
for edge_type in range(S.shape[2]):
c = np.corrcoef(freq.H_train.flatten(), S[:, :, edge_type].flatten())[0, 1]
c_batch = np.corrcoef(freq.H_train.flatten(), S_batch[:, :, edge_type].flatten())[0, 1]
print('Edge {} with H_train: corr={:.4f}, corr_batch={:.4f}'.format(edge_type, c, c_batch))
# save node embeddings and other data before testing since these variables will be updated during testing
variables = get_temporal_variables()
if args.verbose:
print('time', datetime.datetime.fromtimestamp(np.max(time_bar)))
save_checkpoint(batch_idx + 1, epoch)
result = test(model, n_test_batches=None if batch_idx == len(train_loader) - 1 else 10, epoch=epoch)
test_MAR.append(np.mean(result[0]['Com']))
test_HITS10.append(np.mean(result[1]['Com']))
test_loss.append(result[2])
# restore node embeddings and other data
time_bar = set_temporal_variables(variables, model, train_loader, test_loader)
scheduler.step()
print('end time:', datetime.datetime.now())