-
Notifications
You must be signed in to change notification settings - Fork 23
/
encoder.py
220 lines (180 loc) · 7.83 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class LinearEncoder(nn.Module):
def __init__(self, n_in, n_out, sym=True):
super(LinearEncoder, self).__init__()
self.fc = nn.Linear(n_in * 2, n_out)
self.sym = sym
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear) or isinstance(m, nn.Bilinear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.1)
def node2edge(self, x):
# NOTE: Assumes that we have the same graph across all samples.
# receivers = torch.matmul(rel_rec, x)
# senders = torch.matmul(rel_send, x)
# edges = torch.cat([receivers, senders], dim=2)
N = x.shape[0]
mask = x.new(1, N).fill_(1)
node_i = torch.nonzero(mask).repeat(1, N).view(-1, 1)
node_j = torch.nonzero(mask).repeat(N, 1).view(-1, 1)
if self.sym:
triu = (node_i < node_j).squeeze() # skip loops and symmetric connections
else:
triu = (node_i != node_j).squeeze() # skip loops and symmetric connections
idx = (node_i * N + node_j)[triu].squeeze() # linear index
edges = torch.cat((x[node_i[triu]],
x[node_j[triu]]), 1).view(int(torch.sum(triu)), -1)
return edges, idx
def edges2matrix(self, x, idx, N):
edges = x.new(N * N, x.shape[1]).fill_(0)
edges[idx] = x
edges = edges.view(N, N, -1)
return edges
def forward(self, inputs):
x = inputs # N,n_hid
N = x.shape[0]
x, idx = self.node2edge(x) # Eq. 6
x = self.fc(x) # Eq. 7: get edge embeddings (N,N,n_hid)
x = self.edges2matrix(x, idx, N) # N,N,n_hid
if self.sym:
x = x + x.permute(1, 0, 2)
return x
'''The functions below are adopted from https://github.com/ethanfetaya/NRI'''
class MLP(nn.Module):
"""Two-layer fully-connected ELU net with batch norm."""
def __init__(self, n_in, n_hid, n_out, do_prob=0., bilinear=False, bnorm=True):
super(MLP, self).__init__()
self.bilinear = bilinear
self.bnorm = bnorm
if bilinear:
self.fc1 = nn.Bilinear(n_in, n_in, n_hid)
else:
self.fc1 = nn.Linear(n_in, n_hid)
self.fc2 = nn.Linear(n_hid, n_out)
if bnorm:
self.bn = nn.BatchNorm1d(n_out)
self.dropout_prob = do_prob
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear) or isinstance(m, nn.Bilinear):
nn.init.xavier_normal(m.weight.data)
m.bias.data.fill_(0.1)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def batch_norm(self, inputs):
x = self.bn(inputs)
return x
def forward(self, inputs):
# Input shape: [num_sims, num_things, num_features]
if self.bilinear:
x = F.elu(self.fc1(inputs[0], inputs[1]))
x = x.view(x.size(0), -1)
else:
x = F.elu(self.fc1(inputs))
x = F.dropout(x, self.dropout_prob, training=self.training)
x = F.elu(self.fc2(x))
if self.bnorm:
return self.batch_norm(x)
else:
return x
class MLPEncoder(nn.Module):
def __init__(self, n_in, n_hid, n_out, do_prob=0., factor=True, bilinear=False, n_stages=2, bnorm=True, sym=True):
super(MLPEncoder, self).__init__()
self.factor = factor
self.bilinear = bilinear
self.n_stages = n_stages
self.sym = sym
if self.sym:
raise NotImplementedError('')
self.mlp1 = MLP(n_in, n_hid, n_hid, do_prob, bnorm=bnorm)
self.mlp2 = MLP(n_hid * (1 if bilinear else 2), n_hid, n_hid, do_prob, bilinear=bilinear, bnorm=bnorm)
if n_stages == 2:
self.mlp3 = MLP(n_hid, n_hid, n_hid, do_prob)
if self.factor:
self.mlp4 = MLP(n_hid * (2 if bilinear else 3), n_hid, n_hid, do_prob, bilinear=bilinear, bnorm=False)
print("Using factor graph MLP encoder.")
else:
self.mlp4 = MLP(n_hid * (1 if bilinear else 2), n_hid, n_hid, do_prob, bilinear=bilinear, bnorm=False)
print("Using MLP encoder.")
self.fc_out = nn.Linear(n_hid, n_out)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear) or isinstance(m, nn.Bilinear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.1)
def edge2node(self, x):
# NOTE: Assumes that we have the same graph across all samples.
N = x.shape[0]
device = x.get_device() if x.is_cuda else 'cpu'
rel_rec = (1 - torch.eye(N, device=device)).unsqueeze(2) # to sum up all neighbors except for self loops
incoming = (x * rel_rec).sum(dim=1) # N,n_hid
return incoming / N
def node2edge(self, x):
# NOTE: Assumes that we have the same graph across all samples.
N = x.shape[0]
node_i = torch.arange(N).view(N, 1).repeat(1, N).view(-1, 1)
node_j = torch.arange(N).view(N, 1).repeat(N, 1).view(-1, 1)
if self.sym:
triu = (node_i < node_j).squeeze() # skip loops and symmetric connections
else:
triu = (node_i != node_j).squeeze() # skip loops
idx = (node_i * N + node_j)[triu].squeeze() # linear index
if self.bilinear:
edges = (x[node_i[triu]], x[node_j[triu]])
else:
edges = torch.cat((x[node_i[triu]],
x[node_j[triu]]), 1).view(int(torch.sum(triu)), -1)
return edges, idx
def edges2matrix(self, x, idx, N):
edges = x.new(N * N, x.shape[1]).fill_(0)
edges[idx] = x
edges = edges.view(N, N, -1)
return edges
def forward(self, inputs, edges=None):
# Input shape: [num_sims, num_atoms, num_timesteps, num_dims]
# New shape: [num_sims, num_atoms, num_timesteps*num_dims]
x = inputs # N,n_hid
N = x.shape[0]
x = self.mlp1(x) # f_v^1: 2-layer ELU net per node
x, idx = self.node2edge(x) # Eq. 6
x = self.mlp2(x) # f_e^1: get edge embeddings (N,N,n_hid)
if self.n_stages == 2:
x_skip = x # edge embeddings: N*(N-1)/2, n_hid
x = self.edges2matrix(x, idx, N) # N,N,n_hid
if edges is not None:
x_skip = self.edges2matrix(x_skip, idx, N) # N,N,n_hid
u, v = edges[0, 0].item(), edges[0, 1].item()
x_skip = torch.cat((x_skip[u, v].view(1, -1), x_skip[v, u].view(1, -1)), dim=0) # 2,n_hid
if self.sym:
raise NotImplementedError('')
if self.factor:
x = self.edge2node(x) # N,n_hid
x = x[[u, v], :] # 2,n_hid
N = 2
x = self.mlp3(x) # f_v^2: 2,n_hid
x, idx = self.node2edge(x) # N*(N-1)/2, n_hid
if self.bilinear:
x = (torch.cat((x[0].view(x[0].size(0), -1), x_skip), dim=1),
torch.cat((x[1].view(x[1].size(0), -1), x_skip), dim=1)) # Skip connection
else:
x = torch.cat((x, x_skip), dim=1) # Skip connection
x = self.mlp4(x) # N*(N-1)/2, n_hid
x = self.edges2matrix(x, idx, N) # N,N,n_hid
else:
x = self.mlp3(x)
x = torch.cat((x, x_skip), dim=1) # Skip connection
x = self.mlp4(x)
else:
x = self.edges2matrix(x, idx, N) # N,N,n_hid
x = self.fc_out(x) # N,N,n_hid
if self.sym:
x = x + x.permute(1, 0, 2)
return x, idx