-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathevaluate.py
118 lines (104 loc) · 5.63 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from __future__ import division, print_function
from manager import BufferManager, ActionSampleManager
from utils import generate_guide_grid, log_frame, record_screen, draw_from_pred, from_variable_to_numpy
from models import init_models
import os
import sys
import cv2
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import multiprocessing as _mp
mp = _mp.get_context('spawn')
def draw(action, step, obs_var, net, args, action_var, name):
if not os.path.isdir(os.path.join('demo', str(step), name)):
os.makedirs(os.path.join('demo', str(step), name))
s = 'Next Action: [%0.1f, %0.1f]\n' % (action[0][0], action[0][1])
# cv2.putText(raw_obs, 'Next Action: [%0.1f, %0.1f]' % (action[0], action[1]), (70, 400), cv2.FONT_HERSHEY_DUPLEX, 1.2, (255, 255, 0), 2)
action = torch.from_numpy(action).view(1, args.pred_step, args.num_total_act)
action = Variable(action.cuda().float(), requires_grad=False)
obs_var = obs_var / 255.0
obs_var = obs_var.view(1, 1, 9, args.frame_height, args.frame_width)
with torch.no_grad():
output = net(obs_var, action, training=False, action_var=action_var)
output['offroad_prob'] = F.softmax(output['offroad_prob'], -1)
output['coll_prob'] = F.softmax(output['coll_prob'], -1)
for i in range(args.pred_step):
img = draw_from_pred(args, from_variable_to_numpy(torch.argmax(output['seg_pred'][0, i+1], 0)))
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# cv2.putText(img, 'OffRoad: %0.2f%%' % float(100*output['offroad_prob'][0, i, 1]), (20, 160), cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255, 0), 2)
# cv2.putText(img, 'Collision: %0.2f%%' % float(100*output['coll_prob'][0, i, 1]), (20, 200), cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255, 0), 2)
s += 'Step %d\n' % i
s += 'OffRoad: %0.2f%%\n' % float(100*output['offroad_prob'][0, i, 1])
s += 'Collision: %0.2f%%\n' % float(100*output['coll_prob'][0, i, 1])
# s += 'Distance: %0.2f%%\n' % float(output['dist'][0, i, 0])
cv2.imwrite(os.path.join('demo', str(step), name, 'seg%d.png' % (i+1)), img)
with open(os.path.join('demo', str(step), name, 'log.txt'), 'w') as f:
f.write(s)
def evaluate_policy(args, env):
guides = generate_guide_grid(args.bin_divide)
train_net, net, optimizer, epoch, exploration, num_steps = init_models(args)
buffer_manager = BufferManager(args)
action_manager = ActionSampleManager(args, guides)
action_var = Variable(torch.from_numpy(np.array([-1.0, 0.0])).repeat(1, args.frame_history_len - 1, 1), requires_grad=False).float()
# prepare video recording
if args.recording:
video_folder = os.path.join(args.video_folder, "%d" % num_steps)
os.makedirs(video_folder, exist_ok=True)
if args.sync:
video = cv2.VideoWriter(os.path.join(video_folder, 'video.avi'),
cv2.VideoWriter_fourcc(*'MJPG'),
24.0, (args.frame_width, args.frame_height), True)
else:
video = None
signal = mp.Value('i', 1)
p = mp.Process(target=record_screen,
args=(signal,
os.path.join(video_folder, 'video.avi'),
1280, 800, 24))
p.start()
# initialize environment
obs, info = env.reset()
if args.recording:
log_frame(obs, buffer_manager.prev_act, video_folder, video)
print('Start episode...')
for step in range(1000):
obs_var = buffer_manager.store_frame(obs, info)
action, guide_action = action_manager.sample_action(net=net,
obs=obs,
obs_var=obs_var,
action_var=action_var,
exploration=exploration,
step=step,
explore=False,
testing=True)
draw(action, step, obs_var, net, args, action_var, 'outcome')
cv2.imwrite(os.path.join('demo', str(step), 'obs.png'), cv2.cvtColor(obs, cv2.COLOR_BGR2RGB))
action = action[0]
obs, reward, done, info = env.step(action)
action_var = buffer_manager.store_effect(guide_action=guide_action,
action=action[0],
reward=reward,
done=done,
collision=info['collision'],
offroad=info['offroad'])
if args.recording:
log_frame(obs, action[0], video_folder, video)
if done:
print('Episode finished ...')
if args.recording:
if args.sync:
video.release()
if sys.platform == 'linux': # save memory
os.system('ffmpeg -y -i {0} {1}'.format(
os.path.join(video_folder, 'video.avi'),
os.path.join(video_folder, 'video.mp4')
))
if os.path.exists(os.path.join(video_folder, 'video.mp4')):
os.remove(os.path.join(video_folder, 'video.avi'))
else:
signal.value = 0
p.join()
del p
break