-
Notifications
You must be signed in to change notification settings - Fork 2
/
arm_nnexamples_cifar10.cpp
196 lines (166 loc) · 7.89 KB
/
arm_nnexamples_cifar10.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
*
*
* Project: CMSIS NN Library
* Title: arm_nnexamples_cifar10.cpp
*
* Description: Convolutional Neural Network Example
*
* Target Processor: Cortex-M4/Cortex-M7
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Arm LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
/**
* @ingroup groupExamples
*/
/**
* @defgroup CNNExample Convolutional Neural Network Example
*
* \par Description:
* \par
* Demonstrates a convolutional neural network (CNN) example with the use of convolution,
* ReLU activation, pooling and fully-connected functions.
*
* \par Model definition:
* \par
* The CNN used in this example is based on CIFAR-10 example from Caffe [1].
* The neural network consists
* of 3 convolution layers interspersed by ReLU activation and max pooling layers, followed by a
* fully-connected layer at the end. The input to the network is a 32x32 pixel color image, which will
* be classified into one of the 10 output classes.
* This example model implementation needs 32.3 KB to store weights, 40 KB for activations and
* 3.1 KB for storing the \c im2col data.
*
* \image html CIFAR10_CNN.gif "Neural Network model definition"
*
* \par Variables Description:
* \par
* \li \c conv1_wt, \c conv2_wt, \c conv3_wt are convolution layer weight matrices
* \li \c conv1_bias, \c conv2_bias, \c conv3_bias are convolution layer bias arrays
* \li \c ip1_wt, ip1_bias point to fully-connected layer weights and biases
* \li \c input_data points to the input image data
* \li \c output_data points to the classification output
* \li \c col_buffer is a buffer to store the \c im2col output
* \li \c scratch_buffer is used to store the activation data (intermediate layer outputs)
*
* \par CMSIS DSP Software Library Functions Used:
* \par
* - arm_convolve_HWC_q7_RGB()
* - arm_convolve_HWC_q7_fast()
* - arm_relu_q7()
* - arm_maxpool_q7_HWC()
* - arm_avepool_q7_HWC()
* - arm_fully_connected_q7_opt()
* - arm_fully_connected_q7()
*
* <b> Refer </b>
* \link arm_nnexamples_cifar10.cpp \endlink
*
* \par [1] https://github.com/BVLC/caffe
*/
#include <stdint.h>
#include <stdio.h>
#include "arm_math.h"
#include "arm_nnexamples_cifar10_parameter.h"
#include "arm_nnexamples_cifar10_weights.h"
#include "arm_nnfunctions.h"
#include "arm_nnexamples_cifar10_inputs.h"
#ifdef _RTE_
#include "RTE_Components.h"
#ifdef RTE_Compiler_EventRecorder
#include "EventRecorder.h"
#endif
#endif
// include the input and weights
static q7_t conv1_wt[CONV1_IM_CH * CONV1_KER_DIM * CONV1_KER_DIM * CONV1_OUT_CH] = CONV1_WT;
static q7_t conv1_bias[CONV1_OUT_CH] = CONV1_BIAS;
static q7_t conv2_wt[CONV2_IM_CH * CONV2_KER_DIM * CONV2_KER_DIM * CONV2_OUT_CH] = CONV2_WT;
static q7_t conv2_bias[CONV2_OUT_CH] = CONV2_BIAS;
static q7_t conv3_wt[CONV3_IM_CH * CONV3_KER_DIM * CONV3_KER_DIM * CONV3_OUT_CH] = CONV3_WT;
static q7_t conv3_bias[CONV3_OUT_CH] = CONV3_BIAS;
static q7_t ip1_wt[IP1_DIM * IP1_OUT] = IP1_WT;
static q7_t ip1_bias[IP1_OUT] = IP1_BIAS;
/* Here the image_data should be the raw uint8 type RGB image in [RGB, RGB, RGB ... RGB] format */
uint8_t image_data[CONV1_IM_CH * CONV1_IM_DIM * CONV1_IM_DIM] = IMG_DATA;
q7_t output_data[IP1_OUT];
//vector buffer: max(im2col buffer,average pool buffer, fully connected buffer)
q7_t col_buffer[2 * 5 * 5 * 32 * 2];
q7_t scratch_buffer[32 * 32 * 10 * 4];
int main()
{
#ifdef RTE_Compiler_EventRecorder
EventRecorderInitialize (EventRecordAll, 1); // initialize and start Event Recorder
#endif
printf("start execution\n");
/* start the execution */
q7_t *img_buffer1 = scratch_buffer;
q7_t *img_buffer2 = img_buffer1 + 32 * 32 * 32;
/* input pre-processing */
int mean_data[3] = INPUT_MEAN_SHIFT;
unsigned int scale_data[3] = INPUT_RIGHT_SHIFT;
for (int i=0;i<32*32*3; i+=3) {
img_buffer2[i] = (q7_t)__SSAT( ((((int)image_data[i] - mean_data[0])<<7) + (0x1<<(scale_data[0]-1)))
>> scale_data[0], 8);
img_buffer2[i+1] = (q7_t)__SSAT( ((((int)image_data[i+1] - mean_data[1])<<7) + (0x1<<(scale_data[1]-1)))
>> scale_data[1], 8);
img_buffer2[i+2] = (q7_t)__SSAT( ((((int)image_data[i+2] - mean_data[2])<<7) + (0x1<<(scale_data[2]-1)))
>> scale_data[2], 8);
}
// conv1 img_buffer2 -> img_buffer1
arm_convolve_HWC_q7_RGB(img_buffer2, CONV1_IM_DIM, CONV1_IM_CH, conv1_wt, CONV1_OUT_CH, CONV1_KER_DIM, CONV1_PADDING,
CONV1_STRIDE, conv1_bias, CONV1_BIAS_LSHIFT, CONV1_OUT_RSHIFT, img_buffer1, CONV1_OUT_DIM,
(q15_t *) col_buffer, NULL);
arm_relu_q7(img_buffer1, CONV1_OUT_DIM * CONV1_OUT_DIM * CONV1_OUT_CH);
// pool1 img_buffer1 -> img_buffer2
arm_maxpool_q7_HWC(img_buffer1, CONV1_OUT_DIM, CONV1_OUT_CH, POOL1_KER_DIM,
POOL1_PADDING, POOL1_STRIDE, POOL1_OUT_DIM, NULL, img_buffer2);
// conv2 img_buffer2 -> img_buffer1
arm_convolve_HWC_q7_fast(img_buffer2, CONV2_IM_DIM, CONV2_IM_CH, conv2_wt, CONV2_OUT_CH, CONV2_KER_DIM,
CONV2_PADDING, CONV2_STRIDE, conv2_bias, CONV2_BIAS_LSHIFT, CONV2_OUT_RSHIFT, img_buffer1,
CONV2_OUT_DIM, (q15_t *) col_buffer, NULL);
arm_relu_q7(img_buffer1, CONV2_OUT_DIM * CONV2_OUT_DIM * CONV2_OUT_CH);
// pool2 img_buffer1 -> img_buffer2
arm_maxpool_q7_HWC(img_buffer1, CONV2_OUT_DIM, CONV2_OUT_CH, POOL2_KER_DIM,
POOL2_PADDING, POOL2_STRIDE, POOL2_OUT_DIM, col_buffer, img_buffer2);
// conv3 img_buffer2 -> img_buffer1
arm_convolve_HWC_q7_fast(img_buffer2, CONV3_IM_DIM, CONV3_IM_CH, conv3_wt, CONV3_OUT_CH, CONV3_KER_DIM,
CONV3_PADDING, CONV3_STRIDE, conv3_bias, CONV3_BIAS_LSHIFT, CONV3_OUT_RSHIFT, img_buffer1,
CONV3_OUT_DIM, (q15_t *) col_buffer, NULL);
arm_relu_q7(img_buffer1, CONV3_OUT_DIM * CONV3_OUT_DIM * CONV3_OUT_CH);
// pool3 img_buffer-> img_buffer2
arm_maxpool_q7_HWC(img_buffer1, CONV3_OUT_DIM, CONV3_OUT_CH, POOL3_KER_DIM,
POOL3_PADDING, POOL3_STRIDE, POOL3_OUT_DIM, col_buffer, img_buffer2);
arm_fully_connected_q7_opt(img_buffer2, ip1_wt, IP1_DIM, IP1_OUT, IP1_BIAS_LSHIFT, IP1_OUT_RSHIFT, ip1_bias,
output_data, (q15_t *) img_buffer1);
arm_softmax_q7(output_data, 10, output_data);
for (int i = 0; i < 10; i++)
{
printf("%d: %d\n", i, output_data[i]);
}
return 0;
}