-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdelete_blank.py
78 lines (69 loc) · 3.14 KB
/
delete_blank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import cv2
import numpy as np
img_dir = "/home/gytang/project/dataset/2019.1.30/crop_train/"
save_dir = "/home/gytang/project/dataset/2019.1.30/train_n/"
# label_dir = "/home/gytang/project/dataset/2019.1.30/txt/"
#dir_b = "/media/gytang/My Passport3/RESIDE/synthetic/original"
file_list = os.listdir(img_dir)
file_list.sort()
# b_list = os.listdir(dir_b)
# b_list.sort()
flag = 0
# write_txt = open('./defp_2.19_val.txt','w')
for _,imga in enumerate(file_list):
# for _,imga in enumerate(os.listdir(os.path.join(dir,file))):
#for b_idx, imgb in enumerate(b_list):
content_a = cv2.imread(os.path.join(img_dir,imga))
start_row = None
end_row = None
crop_image=None
# cv2.imshow("", content_a)
# cv2.waitKey(1000)
for i in range(content_a.shape[0]-1):
# for j in range(content_a.shape[1]):
#print(np.mean(content_a[i, :].flatten()),np.mean(content_a[i + 1, :].flatten()))
if np.mean(content_a[i, :].flatten()) >=253 and np.mean(content_a[i + 1, :].flatten()) < 253:
start_row = i+2
elif np.mean(content_a[i, :].flatten())<253 and np.mean(content_a[i + 1, :].flatten()) >=253:
end_row = i
try:
crop_image=content_a[start_row:start_row+32,:,:]
crop_image = np.uint8(np.concatenate((crop_image, np.ones((crop_image.shape[0], 1, 3)) * 255), axis=1))
# cv2.imshow("", crop_image)
# cv2.waitKey(1000)
except:
pass
print(os.path.join(img_dir,imga))
start_row = None
end_row = None
break
start_line = None
end_line = None
if crop_image is None:
if content_a.shape[0]<34:
crop_image = content_a
cv2.imwrite(os.path.join(save_dir, imga), crop_image)
continue
else:
crop_image = content_a[int((content_a.shape[0]-34)/2):int(content_a.shape[0]-(content_a.shape[0]-34)/2),:,:]
for j in range(content_a.shape[1]):
final_crop_image=None
# print(np.mean(crop_image[:,j,:].flatten()))
if np.mean(crop_image[:,j,:].flatten())>253 and np.mean(crop_image[:,j+1,:].flatten())<253:
start_line = j+2
elif start_line is not None and np.mean(crop_image[:,j,:].flatten())<253 and np.mean(crop_image[:,j+1,:].flatten())>253:
end_line = j
if end_line-start_line>crop_image.shape[1]*0.8:
final_crop_image = crop_image[:, start_line:end_line, :]
cv2.imwrite(os.path.join(save_dir,imga),final_crop_image)
# cv2.imshow("", final_crop_image)
# cv2.waitKey(1000)
start_line = None
end_line = None
break
if final_crop_image is None:
# cv2.imshow("",crop_image[:,5:,:])
# cv2.waitKey(1000)
print("***",imga)
cv2.imwrite(os.path.join(save_dir, imga), crop_image[:,5:,:])