-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrop_label_image_xq.py
106 lines (98 loc) · 5.57 KB
/
crop_label_image_xq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import cv2
import numpy as np
img_dir = "/home/gytang/project/dataset/2019.1.30/jpg/"
label_dir = "/home/gytang/project/dataset/2019.1.30/txt/"
#dir_b = "/media/gytang/My Passport3/RESIDE/synthetic/original"
file_list = os.listdir(img_dir)
file_list.sort()
# b_list = os.listdir(dir_b)
# b_list.sort()
flag = 0
write_txt = open('./defp_2.19_val_crop.txt','w')
for _,imga in enumerate(file_list[120:]):
# for _,imga in enumerate(os.listdir(os.path.join(dir,file))):
#for b_idx, imgb in enumerate(b_list):
content_a = cv2.imread(os.path.join(img_dir,imga))
txt_a = open(os.path.join(label_dir,os.path.splitext(imga)[0]+'.txt'),'r')
for line in range(content_a.shape[1])[20:]:
if min((content_a[:,line,0]).flatten())==255:
for line_contine in range(content_a.shape[1])[line:]:
if min(content_a[:,line_contine,0].flatten())<255:
break
#---find the image start crop--
startrow = None
endrow = None
for row in range(content_a.shape[0])[:-1]:
con = cv2.cvtColor(content_a,cv2.COLOR_BGR2GRAY)
if np.mean(con[row,line_contine:].flatten())>=253 and np.mean(con[row+1,line_contine:].flatten())<253:
startrow = row
elif startrow is not None and np.mean(con[row,line_contine:].flatten())<253 and np.mean(con[row+1,line_contine:].flatten())>=253:
endrow = row
crop_content1 = content_a[startrow:endrow, line_contine - 1:, :]
# cv2.imshow("",crop_content1)
# cv2.waitKey(1000)
if endrow-startrow>15:
crop_content = content_a[startrow:endrow,line_contine-1:,:]
crop_lst = []
con_crop = cv2.cvtColor(crop_content, cv2.COLOR_BGR2GRAY)
else:
continue
startrow = None
endrow = None
for line_interva in range(crop_content.shape[1])[:-1]:
if endrow is None and np.mean(con_crop[:,line_interva].flatten())>=254 and np.mean(con_crop[:,line_interva+1].flatten())<254:
startrow = line_interva
endrow=None
elif startrow is not None and np.mean(con_crop[:,line_interva].flatten())<254 and np.mean(con_crop[:,line_interva+1].flatten())>=254:
endrow = line_interva
if endrow-startrow>30:
crop_img = crop_content[:,startrow:endrow,:]
crop_lst.append(crop_img)
# cv2.imshow("",crop_img)
# cv2.waitKey(1000)
startrow = None
endrow = None
if crop_lst == []:
continue
line_txt = txt_a.readline()
try:
txt_lst = line_txt.split(':')[1].split(' ')
except:
print("3",line_txt)
continue
if line_txt.split(':')[0].split('.')[0] == "":
print("1", line_txt)
continue
if "*" in txt_lst:
continue
if len(crop_lst)+1 == len(txt_lst):
for si,st in enumerate(txt_lst[1:]):
if flag == 659:
print("no")
# cv2.imshow("",crop_lst[si])
# cv2.waitKey(700)
if st =="" or st == " ":
continue
cv2.imwrite("/home/gytang/project/dataset/2019.1.30/crop_val/"+
line_txt.split(':')[0].split('.')[0]+'_'+str(flag)+'.jpg',crop_lst[si])
if '\n' not in st:
write_txt.write(
'/iqubicdata/workspace/tanggy/project/rcnn/dataset/2019.1.30/val/'+line_txt.split(':')[0].split('.')[0] + '_' + str(flag) + '.jpg' + ':'+st+'\n')
else:
write_txt.write('/iqubicdata/workspace/tanggy/project/rcnn/dataset/2019.1.30/val/'+
line_txt.split(':')[0].split('.')[0] + '_' + str(
flag) + '.jpg' + ':' + st)
flag += 1
else:
print(flag)
continue
break
txt_a.close()
write_txt.close()
# content_b = cv2.imread(os.path.join(dir_b, b_list[a_idx]))
# content_b = cv2.resize(content_b, (128, 128))H\
# content = np.concatenate((content_a,content_b),axis=1)
# if not os.path.exists(os.path.join("/media/gytang/My Passport3/exp_res/car-detection/car-resize",file)):
# os.mkdir(os.path.join("/media/gytang/My Passport3/exp_res/car-detection/car-resize",file))
# cv2.imwrite(os.path.join("/media/gytang/My Passport3/exp_res/car-detection/car-resize",file,imga+".jpg",),content_a)