forked from alibaba/EasyCV
-
Notifications
You must be signed in to change notification settings - Fork 1
/
moby_deit_small_4xb32_100e_jpg.py
92 lines (85 loc) · 2.54 KB
/
moby_deit_small_4xb32_100e_jpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
_base_ = 'configs/base.py' # _base_ = 'configs/base.py'
# model settings
model = dict(
type='MoBY',
train_preprocess=['randomGrayScale', 'gaussianBlur'],
queue_len=4096,
momentum=0.99,
pretrained=False,
backbone=dict(
type='PytorchImageModelWrapper',
# model_name='pit_xs_distilled_224',
# model_name='swin_small_patch4_window7_224', # bad 16G memory will down
# model_name='swin_tiny_patch4_window7_224', # good 768
# model_name='swin_base_patch4_window7_224_in22k', # bad 16G memory will down
# model_name='vit_deit_tiny_distilled_patch16_224', # good 192,
model_name='vit_deit_small_distilled_patch16_224', # good 384,
# model_name = 'resnet50',
),
neck=dict(
type='MoBYMLP',
in_channels=384,
hid_channels=4096,
out_channels=256,
num_layers=2),
head=dict(
type='MoBYMLP',
in_channels=256,
hid_channels=4096,
out_channels=256,
num_layers=2))
data_train_list = 'imagenet_raw/meta/train.txt'
data_train_root = 'imagenet_raw/'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=224, scale=(0.2, 1.)),
dict(
type='RandomAppliedTrans',
transforms=[
dict(
type='ColorJitter',
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.4)
],
p=0.8),
dict(type='RandomGrayscale', p=0.2),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img'])
]
data = dict(
imgs_per_gpu=32, # total 32*8=256
workers_per_gpu=4,
drop_last=True,
train=dict(
type='MultiViewDataset',
data_source=dict(
type='SSLSourceImageList',
list_file=data_train_list,
root=data_train_root),
num_views=[1, 1],
pipelines=[train_pipeline, train_pipeline]))
# optimizer
optimizer = dict(
type='AdamW',
lr=0.001,
weight_decay=0.05,
trans_weight_decay_set=['backbone'])
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=5e-6,
warmup='linear',
warmup_iters=5,
warmup_ratio=0.0001,
warmup_by_epoch=True)
checkpoint_config = dict(interval=5)
# runtime settings
total_epochs = 100
# export config
# export = dict(export_neck=True)
export = dict(export_neck=False)
checkpoint_sync_export = True