-
Notifications
You must be signed in to change notification settings - Fork 4
/
code-16-embedding.py
177 lines (145 loc) · 6.97 KB
/
code-16-embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from tensorflow.examples.tutorials.mnist import input_data
import os
import tensorflow as tf
import sys
import urllib
if sys.version_info[0] >= 3:
from urllib.request import urlretrieve
else:
from urllib import urlretrieve
LOGDIR = './tensorflow_logs/mnist_deep'
def weight_variable(shape):
"""Generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name='weight')
def bias_variable(shape):
"""Generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name='bias')
def main():
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Placeholder that will be fed image data.
x = tf.placeholder(tf.float32, [None, 784], name='x')
# Placeholder that will be fed the correct labels.
y_ = tf.placeholder(tf.float32, [None, 10], name='labels')
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', x_image, 4)
# Convolutional layer - maps one grayscale image to 32 features.
with tf.name_scope('conv1'):
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_conv1 = tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.relu(x_conv1 + b_conv1)
tf.summary.histogram("weights", W_conv1)
tf.summary.histogram("biases", b_conv1)
tf.summary.histogram("activations", h_conv1)
# Pooling layer - downsamples by 2X.
with tf.name_scope('pool1'):
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Display the image after max pooling on tensorboard
h_pool1_image = tf.reshape(h_pool1, [-1, 14, 14, 1])
tf.summary.image('conv1', h_pool1_image, 4)
# Second convolutional layer -- maps 32 feature maps to 64.
with tf.name_scope('conv2'):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
x_conv2 = tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.relu(x_conv2 + b_conv2)
tf.summary.histogram("weights", W_conv2)
tf.summary.histogram("biases", b_conv2)
tf.summary.histogram("activations", h_conv2)
# Second pooling layer.
with tf.name_scope('pool2'):
h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Display the image after max pooling on tensorboard
h_pool2_image = tf.reshape(h_pool2, [-1, 7, 7, 1])
tf.summary.image('conv2', h_pool2_image, 4)
# After 2 rounds of downsampling, our 28x28 image
# is down to 7x7 with 64 feature maps.
with tf.name_scope('fc1'):
h_pool_flat = tf.reshape(h_pool2, [-1, 7*7*64])
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_pool_flat, W_fc1) + b_fc1)
tf.summary.histogram("weights", W_fc1)
tf.summary.histogram("biases", b_fc1)
tf.summary.histogram("activations", h_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of
# features.
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the features to 10 classes, one for each digit
with tf.name_scope('fc-classify'):
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
###########################
# Define our loss.
with tf.name_scope('loss'):
# Use more numerically stable cross entropy.
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y),
name='cross_entropy'
)
tf.summary.scalar('loss', cross_entropy)
# Define our optimizer.
with tf.name_scope('optimizer'):
train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy, name='train_step')
# Define accuracy.
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
correct_prediction = tf.cast(correct_prediction, tf.float32, name='correct_prediction')
accuracy = tf.reduce_mean(correct_prediction, name='accuracy')
tf.summary.scalar('accuracy', accuracy)
# Launch session.
sess = tf.InteractiveSession()
# Initialize variables.
tf.global_variables_initializer().run()
# Merge all the summary data
merged = tf.summary.merge_all()
# Create summary writer
writer = tf.summary.FileWriter(LOGDIR, sess.graph)
# Get sprite and labels file for the embedding projector
GITHUB_URL ='https://raw.githubusercontent.com/mamcgrath/TensorBoard-TF-Dev-Summit-Tutorial/master/'
urlretrieve(GITHUB_URL + 'labels_1024.tsv', LOGDIR + 'labels_1024.tsv')
urlretrieve(GITHUB_URL + 'sprite_1024.png', LOGDIR + 'sprite_1024.png')
# Setup embedding visualization
embedding = tf.Variable(tf.zeros([1024, 1024]), name="test_embedding")
assignment = embedding.assign(h_fc1_drop)
saver = tf.train.Saver()
config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig()
embedding_config = config.embeddings.add()
embedding_config.tensor_name = embedding.name
embedding_config.sprite.image_path = LOGDIR + 'sprite_1024.png'
embedding_config.metadata_path = LOGDIR + 'labels_1024.tsv'
# Specify the width and height of a single thumbnail.
embedding_config.sprite.single_image_dim.extend([28, 28])
tf.contrib.tensorboard.plugins.projector.visualize_embeddings(writer, config)
# Do the training.
for i in range(1100):
batch = mnist.train.next_batch(100)
if i % 5 == 0:
summary = sess.run(merged, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
writer.add_summary(summary, i)
if i % 100 == 0:
train_accuracy = sess.run(accuracy, feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("Step %d, Training Accuracy %g" % (i, float(train_accuracy)))
if i % 500 == 0:
sess.run(assignment, feed_dict={x: mnist.test.images[:1024], y_: mnist.test.labels[:1024], keep_prob: 1.0})
saver.save(sess, os.path.join(LOGDIR, "model.ckpt"), i)
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
# See how model did.
print("Test Accuracy %g" % sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels,
keep_prob: 1.0}))
# Close summary writer
writer.close()
if __name__ == '__main__':
main()