-
Notifications
You must be signed in to change notification settings - Fork 4
/
code-15-DropOut.py
132 lines (104 loc) · 4.86 KB
/
code-15-DropOut.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
LOGDIR = './tensorflow_logs/mnist_deep'
def weight_variable(shape):
"""Generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name='weight')
def bias_variable(shape):
"""Generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name='bias')
def main():
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Placeholder that will be fed image data.
x = tf.placeholder(tf.float32, [None, 784], name='x')
# Placeholder that will be fed the correct labels.
y_ = tf.placeholder(tf.float32, [None, 10], name='labels')
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', x_image, 4)
# Convolutional layer - maps one grayscale image to 32 features.
with tf.name_scope('conv1'):
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_conv1 = tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.relu(x_conv1 + b_conv1)
# Pooling layer - downsamples by 2X.
with tf.name_scope('pool1'):
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Second convolutional layer -- maps 32 feature maps to 64.
with tf.name_scope('conv2'):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
x_conv2 = tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.relu(x_conv2 + b_conv2)
# Second pooling layer.
with tf.name_scope('pool2'):
h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# After 2 rounds of downsampling, our 28x28 image
# is down to 7x7 with 64 feature maps.
with tf.name_scope('fc1'):
h_pool_flat = tf.reshape(h_pool2, [-1, 7*7*64])
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_pool_flat, W_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of
# features.
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the features to 10 classes, one for each digit
with tf.name_scope('fc-classify'):
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
###########################
# Define our loss.
with tf.name_scope('loss'):
# Use more numerically stable cross entropy.
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y),
name='cross_entropy'
)
tf.summary.scalar('loss', cross_entropy)
# Define our optimizer.
with tf.name_scope('optimizer'):
train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy, name='train_step')
# Define accuracy.
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
correct_prediction = tf.cast(correct_prediction, tf.float32, name='correct_prediction')
accuracy = tf.reduce_mean(correct_prediction, name='accuracy')
tf.summary.scalar('accuracy', accuracy)
# Launch session.
sess = tf.InteractiveSession()
# Initialize variables.
tf.global_variables_initializer().run()
# Merge all the summary data
merged = tf.summary.merge_all()
# Create summary writer
writer = tf.summary.FileWriter(LOGDIR, sess.graph)
# Do the training.
for i in range(1100):
batch = mnist.train.next_batch(100)
if i % 5 == 0:
summary = sess.run(merged, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
writer.add_summary(summary, i)
if i % 100 == 0:
train_accuracy = sess.run(accuracy, feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("Step %d, Training Accuracy %g" % (i, float(train_accuracy)))
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
# See how model did.
print("Test Accuracy %g" % sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels,
keep_prob: 1.0}))
# Close summary writer
writer.close()
if __name__ == '__main__':
main()