-
Notifications
You must be signed in to change notification settings - Fork 0
/
TF-09-TwoCNN.py
105 lines (82 loc) · 3.86 KB
/
TF-09-TwoCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
def weight_variable(shape):
"""Generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name='weight')
def bias_variable(shape):
"""Generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name='bias')
def main():
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Placeholder that will be fed image data.
x = tf.placeholder(tf.float32, [None, 784], name='x')
# Placeholder that will be fed the correct labels.
y_ = tf.placeholder(tf.float32, [None, 10], name='labels')
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# Convolutional layer - maps one grayscale image to 32 features.
with tf.name_scope('conv1'):
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_conv1 = tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.relu(x_conv1 + b_conv1)
# Pooling layer - downsamples by 2X.
with tf.name_scope('pool1'):
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Second convolutional layer -- maps 32 feature maps to 64.
with tf.name_scope('conv2'):
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
x_conv2 = tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.relu(x_conv2 + b_conv2)
# Second pooling layer.
with tf.name_scope('pool2'):
h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# After 2 rounds of downsampling, our 28x28 image
# is down to 7x7 with 64 feature maps.
with tf.name_scope('flatten'):
h_pool_flat = tf.reshape(h_pool2, [-1, 7*7*64])
# Map the features to 10 classes, one for each digit
with tf.name_scope('fc-classify'):
W_fc2 = weight_variable([7*7*64, 10])
b_fc2 = bias_variable([10])
y = tf.matmul(h_pool_flat, W_fc2) + b_fc2
###########################
# Define our loss.
with tf.name_scope('loss'):
# Use more numerically stable cross entropy.
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y),
name='cross_entropy'
)
# Define our optimizer.
with tf.name_scope('optimizer'):
train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy, name='train_step')
# Define accuracy.
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
correct_prediction = tf.cast(correct_prediction, tf.float32, name='correct_prediction')
accuracy = tf.reduce_mean(correct_prediction, name='accuracy')
# Launch session.
sess = tf.InteractiveSession()
# Initialize variables.
tf.global_variables_initializer().run()
# Do the training.
for i in range(1100):
batch = mnist.train.next_batch(100)
if i % 100 == 0:
train_accuracy = sess.run(accuracy, feed_dict={x:batch[0], y_: batch[1]})
print("Step %d, Training Accuracy %g" % (i, float(train_accuracy)))
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1]})
# See how model did.
print("Test Accuracy %g" % sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels}))
if __name__ == '__main__':
main()