-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathplacing_bb_func.py
457 lines (354 loc) · 17.8 KB
/
placing_bb_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#################
#
# This file is part of
# ToBaCCo - Topologically-Based Crystal Constructor
#
# Copyright 2017 Yamil J. Colon <[email protected]>
# Diego Gomez-Gualdron <[email protected]>
# Ben Bucior <[email protected]>
#
# ToBaCCo is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ToBaCCo is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
#################
import os
import numpy as np
import re
import fnmatch
import itertools
from neighbors import neighbor_edges, neighbor_vertices
from nodes import __node_properties
from transformations import superimposition_matrix
from operator import itemgetter
import sys
import contextlib
import collections
#Placing node.
def __place_bb(arg, unit_cell, edge_coord, vertex_coord, edge_neighbor_vertex):
node = __node_properties(arg)
np.set_printoptions(threshold=sys.maxint)
connect_site = node[0]
distance_connection_site = node[1]
angle_connection_site_pair = node[2]
connectivity = node[3]
elements = node[4]
element_coord = node[5]
bb_elements=[]
bb_frac_coordinates=[]
bb_connectivity=[]
for j in range(len(vertex_coord)):
if len(elements)==1: ### Special case when node building block is a single atom
bb_elements.append(elements)
bb_frac_coordinates.append(vertex_coord[j])
continue
edge_vector =[]
##Get coordinates of neighboring edges to find connection vectors
for i in range(len(edge_neighbor_vertex[j])):
edge_vector.append(edge_coord[edge_neighbor_vertex[j][i]])
edge_vector=np.asarray(edge_vector) # fract. coord. of neigboring edges
node_vector=[]
for i in range(len(edge_vector)):
diffa = edge_vector[i][0]-vertex_coord[j][0]
diffb = edge_vector[i][1]-vertex_coord[j][1]
diffc = edge_vector[i][2]-vertex_coord[j][2]
### PERIODIC BOUNDARY CONDITIONS
if diffa > 0.5:
edge_vector[i][0] = edge_vector[i][0] - 1
elif diffa < -0.5:
edge_vector[i][0] = edge_vector[i][0] + 1
if diffb > 0.5:
edge_vector[i][1] = edge_vector[i][1] - 1
elif diffb < -0.5:
edge_vector[i][1] = edge_vector[i][1] + 1
if diffc > 0.5:
edge_vector[i][2] = edge_vector[i][2] - 1
elif diffc < -0.5:
edge_vector[i][2] = edge_vector[i][2] + 1
node_vector.append(edge_vector[i] - vertex_coord[j])
node_vector =np.asarray(node_vector) ## fract vectors from node to edge adjusted for PBCs
node_vector_real=[]
for i in range(len(node_vector)):
vector_real = np.dot(np.transpose(unit_cell), node_vector[i])
node_vector_real.append(vector_real)
node_vector_real = np.asarray(node_vector_real) # real (not fractional) coord vector of network
node_coord_real = np.dot(np.transpose(unit_cell), vertex_coord[j]) # real coord of network node (centroid of node)
norm_node_vector_real=[]
for i in range(len(node_vector_real)):
norm = node_vector_real[i]/np.linalg.norm(node_vector_real[i])
norm_node_vector_real.append(norm)
norm_node_vector_real = np.asarray(norm_node_vector_real) # normalized network vectors
connect_node=[]
connection_node=[]
for i in range(len(norm_node_vector_real)):
connect = norm_node_vector_real[i]*distance_connection_site[i]
connect_node.append(connect)
connection_node.append(connect)
connection_node=np.asarray(connection_node) ## coordinates to where node connection sites should be placed
connection_site = []
for i in range(len(connect_site)):
connection_site.append(connect_site[i])
connection_site = np.asarray(connection_site)
### To deal with nodes with ONLY two connections.
if len(connection_site)==2:
bi_connection_site=[]
bi_connection_node=[]
#test_vector=[0, 0, 0]
for i in range(len(connection_site)):
bi_connection_site.append(connection_site[i])
bi_connection_node.append(connection_node[i])
#bi_connection_site.append(-connection_site[0])
#bi_connection_site.append(-connection_site[1])
#bi_connection_node.append(-connection_node[0])
#bi_connection_node.append(-connection_node[1])
bi_connection_site.append(np.cross(connection_site[0], connection_site[1]))
bi_connection_site.append(np.cross(connection_site[1], connection_site[0]))
bi_connection_node.append(np.cross(connection_node[1], connection_node[0]))
bi_connection_node.append(np.cross(connection_node[0], connection_node[1]))
#bi_connection_site.append(test_vector)
#bi_connection_node.append(test_vector)
connection_site=np.asarray(bi_connection_site)
connection_node=np.asarray(bi_connection_node)
#print "again", connection_site, len(connection_site)
#print connection_node
### To deal with *bct* topologies
if len(connection_site)==10:
angle_site_sum=[]
angle_node_sum=[]
distance_site_sum=[]
distance_node_sum=[]
for i in range(len(connection_site)):
angle_site=[]
angle_node=[]
distance_site=[]
distance_node=[]
for k in range(len(connection_site)):
angle_s=np.arccos(np.dot(connection_site[i], connection_site[k])/(np.linalg.norm(connection_site[i])*np.linalg.norm(connection_site[k])))*180/np.pi
angle_n=np.arccos(np.dot(connection_node[i], connection_node[k])/(np.linalg.norm(connection_node[i])*np.linalg.norm(connection_node[k])))*180/np.pi
dist_s = np.linalg.norm(connection_site[i] - connection_site[k])
dist_n = np.linalg.norm(connection_node[i] - connection_node[k])
if np.isnan(angle_s)==True:
angle_s=np.arccos(round(np.dot(connection_site[i], connection_site[k])/(np.linalg.norm(connection_site[i])*np.linalg.norm(connection_site[k]))))*180/np.pi
if np.isnan(angle_n)==True:
angle_n=np.arccos(round(np.dot(connection_node[i], connection_node[k])/(np.linalg.norm(connection_node[i])*np.linalg.norm(connection_node[k]))))*180/np.pi
angle_site.append(angle_s)
angle_node.append(angle_n)
distance_site.append(dist_s)
distance_node.append(dist_n)
counter_site = collections.Counter(np.around(distance_site,1))
counter_node = collections.Counter(np.around(distance_node,1))
angle_site_sum.append(sum(angle_site))
angle_node_sum.append(sum(angle_node))
distance_site_sum.append(sum(distance_site))
distance_node_sum.append(sum(distance_node))
location_dist_site=[]
location_dist_node=[]
index_dist_site = min(enumerate(distance_site_sum), key=itemgetter(1))[0]
index_dist_node = min(enumerate(distance_node_sum), key=itemgetter(1))[0]
location_dist_site.append(index_dist_site)
location_dist_node.append(index_dist_node)
distance_site_sum[index_dist_site]=1000
distance_node_sum[index_dist_node]=1000
index_dist_site = min(enumerate(distance_site_sum), key=itemgetter(1))[0]
index_dist_node = min(enumerate(distance_node_sum), key=itemgetter(1))[0]
location_dist_site.append(index_dist_site)
location_dist_node.append(index_dist_node)
location_dist_site = np.sort(location_dist_site)
location_dist_node = np.sort(location_dist_node)
index_site = max(enumerate(angle_site_sum), key=itemgetter(1))[0]
angle_site_sum[index_site]=0
index_site_1 = max(enumerate(angle_site_sum), key=itemgetter(1))[0]
index_node = max(enumerate(angle_node_sum), key=itemgetter(1))[0]
angle_node_sum[index_node]=0
index_node_1 = max(enumerate(angle_node_sum), key=itemgetter(1))[0]
dist_site =[]
dist_node=[]
location_add_site=[]
location_add_node=[]
for i in range(len(connection_site)):
dist_site.append(np.linalg.norm(connection_site[location_dist_site[0]] - connection_site[i]))
dist_node.append(np.linalg.norm(connection_node[location_dist_node[0]] - connection_node[i]))
counter_site = collections.Counter(np.around(dist_site,0))
counter_node = collections.Counter(np.around(dist_node,0))
site_criterion = counter_site.most_common(1)[0][0]
if site_criterion == counter_node.most_common(1)[0][0]:
node_criterion = counter_node.most_common(1)[0][0]
else:
node_criterion = counter_node.most_common(2)[1][0]
for i in range(len(dist_site)):
if np.around(dist_site[i],0) == site_criterion:
location_add_site.append(i)
if np.around(dist_node[i],0) == node_criterion:
location_add_node.append(i)
connection_site = [connection_site[location_dist_site[1]], connection_site[location_dist_site[0]], connection_site[location_add_site[0]], connection_site[location_add_site[1]], connection_site[location_add_site[2]], connection_site[location_add_site[3]]]
connection_node = [connection_node[location_dist_node[1]], connection_node[location_dist_node[0]], connection_node[location_add_node[0]], connection_node[location_add_node[1]], connection_node[location_add_node[2]], connection_node[location_add_node[3]]]
## This part of the code orders vectors and then takes the ratio to find opposite vectors and, if they exist, perpendiculars.
## This is to deal with topologies with have nodes with more than 8 connection sites.
list_a = []
list_a_1 =[]
for i in range(len(connection_site)):
list_a.append(np.dot(connection_site[0], connection_site[i]))
list_a_1.append(np.dot(connection_site[1], connection_site[i]))
list_a = np.asarray(list_a)
list_a_1 = np.asarray(list_a_1)
list_b = []
list_b_1 =[]
for i in range(len(connection_node)):
list_b.append(np.dot(connection_node[0], connection_node[i]))
list_b_1.append(np.dot(connection_node[1], connection_node[i]))
list_b = np.asarray(list_b)
list_b_1 = np.asarray(list_b_1)
sigma = np.sort(list_a)
sigma_1 = np.sort(list_a_1)
tau = np.sort(list_b)
tau_1 = np.sort(list_b_1)
sorted_a = np.argsort(list_a)
sorted_a_1 = np.argsort(list_a_1)
sorted_b = np.argsort(list_b)
sorted_b_1 = np.argsort(list_b_1)
inner_distance_site = []
for i in range(len(connection_site)):
inner_distance_site.append(np.linalg.norm(connection_site[i]-connection_site[0]))
sorted_sites = []
sorted_sites_1 =[]
sorted_nodes_1 =[]
for i in range(len(connection_site)):
sorted_sites.append(connection_site[i])
sorted_sites_1.append(connection_site[i])
sorted_nodes_1.append(connection_node[i])
sorted_sites = np.asarray(sorted_sites)
sorted_sites_1 = np.asarray(sorted_sites_1)
sorted_nodes_1 = np.asarray(sorted_nodes_1)
for i in range(len(sorted_sites)):
sorted_sites[sorted_b[i]]=connection_site[sorted_a[i]]
sorted_sites_1[sorted_b_1[i]] = connection_site[sorted_a_1[i]]
sorted_nodes_1[sorted_a_1[i]] = connection_node[sorted_b_1[i]]
connection_site = sorted_sites
inner_dot_site_sorted=[]
inner_dot_site_sorted_1 = []
inner_dot_node_sorted=[]
inner_dot_node_sorted_1=[]
for i in range(len(sorted_sites)):
inner_dot_site_sorted.append(np.dot(sorted_sites[0], sorted_sites[i]))
inner_dot_node_sorted.append(np.dot(connection_node[0], connection_node[i]))
inner_dot_site_sorted_1.append(np.dot(sorted_sites_1[1], sorted_sites_1[i]))
inner_dot_node_sorted_1.append(np.dot(connection_node[1], connection_node[i]))
ratio_sorted = np.divide(inner_dot_site_sorted, inner_dot_node_sorted)
ratio_sorted_1 = np.divide(inner_dot_site_sorted_1, inner_dot_node_sorted_1)
location_sorted=[]
location_sorted_1=[]
for i in range(len(ratio_sorted)):
if round(ratio_sorted[i],2)==1:
location_sorted.append(i)
if round(ratio_sorted_1[i],2)==1:
location_sorted_1.append(i)
if len(connection_node)>8 and len(connection_node)<24:
location_sortednan=[]
location_sortednan_1=[]
for i in range(len(ratio_sorted)):
if np.isnan(ratio_sorted[i])==True or round(ratio_sorted[i],2)==0:
location_sortednan.append(i)
if np.isnan(ratio_sorted_1[i])==True:
location_sortednan_1.append(i)
if len(location_sorted)==1:
location_sorted=[]
location_sorted.append(0)
difference = []
for i in range(1, len(ratio_sorted)):
if ratio_sorted[i] < 1:
difference.append(10000)
elif ratio_sorted[i] >1:
difference.append(abs(1 - ratio_sorted[i]))
index_ratio = min(enumerate(difference), key=itemgetter(1))[0]
location_sorted.append(index_ratio +1)
tfflag=0
if len(connection_node)>10 and len(connection_node)<24: ## to deal with fcu and ftw
if len(location_sortednan)<2:
connection_node_spec = [connection_node[location_sorted[0]], connection_node[location_sorted[1]], np.cross(connection_node[location_sorted[0]], connection_node[location_sorted[1]])]
connection_site_spec = [sorted_sites[location_sorted[0]], sorted_sites[location_sorted[1]], np.cross(sorted_sites[location_sorted[0]], sorted_sites[location_sorted[1]])]
elif len(location_sortednan)>=2:
connection_node_spec = [connection_node[location_sorted[0]], connection_node[location_sorted[1]], connection_node[location_sortednan[0]], connection_node[location_sortednan[1]]]
connection_site_spec = [sorted_sites[location_sorted[0]], sorted_sites[location_sorted[1]], sorted_sites[location_sortednan[0]], sorted_sites[location_sortednan[1]]]
connection_node_spec = np.asarray(connection_node_spec, dtype=np.float64)
connection_site_spec = np.asarray(connection_site_spec, dtype=np.float64)
tfflag=1
if len(connection_node)>12: ## to deal with rht
connection_node = [connection_node[location_sorted[0]], connection_node[location_sorted[1]], connection_node[location_sorted_1[0]], connection_node[location_sorted_1[1]]]
connection_site = [sorted_sites[location_sorted[0]], sorted_sites[location_sorted[1]], sorted_sites_1[location_sorted_1[0]], sorted_sites_1[location_sorted_1[1]]]
if tfflag==0:## if number of connection points in topology is 8 or less, except *bct*.
perm = np.asarray(list(itertools.permutations(connection_site)))#permutations of connection sites
node_site_distance=[]
for i in range(len(perm)):
trans_matrix = superimposition_matrix(np.transpose(perm[i]), np.transpose(connection_node), usesvd=False)
perm_plus_one = np.append(perm[i], np.ones([len(perm[i]),1]),1)
trial_sites=[]
for k in range(len(perm_plus_one)):
test_sites=np.dot(trans_matrix, perm_plus_one[k])
trial_sites.append(test_sites)
perm_sites = np.asarray(trial_sites)
perm_sites = perm_sites[:, :-1]
site_distance=[]
for k in range(len(perm_sites)):
site_distance.append(np.linalg.norm(perm_sites[k]-connection_node[k]))
node_site_distance.append(sum(site_distance))
#if node_site_distance[i] < 1:
#break
index_perm = min(enumerate(node_site_distance), key=itemgetter(1))[0]#pick permutation that fits best
elif tfflag==1:# if connection points in topology is more than 8, except *bct*. Number of connection points has been decreased.
perm = np.asarray(list(itertools.permutations(connection_site_spec)))
node_site_distance=[]
for i in range(len(perm)):
trans_matrix = superimposition_matrix(np.transpose(perm[i]), np.transpose(connection_node_spec), usesvd=False)
perm_plus_one = np.append(perm[i], np.ones([len(perm[i]),1]),1)
trial_sites=[]
for k in range(len(perm_plus_one)):
test_sites=np.dot(trans_matrix, perm_plus_one[k])
trial_sites.append(test_sites)
perm_sites=np.asarray(trial_sites)
perm_sites = perm_sites[:, :-1]
site_distance=[]
for k in range(len(perm_sites)):
site_distance.append(np.linalg.norm(perm_sites[k] - connection_node_spec[k]))
node_site_distance.append(sum(site_distance))
index_perm = min(enumerate(node_site_distance), key=itemgetter(1))[0]#pick permutation that fits best
connection_site = perm[index_perm]
#print index_perm
##Calculate transformation matrix, using quaternions, to map building block vectors onto network vectors
if tfflag==0:
tfmatrix = superimposition_matrix(np.transpose(connection_site), np.transpose(connection_node), usesvd=False)
elif tfflag==1:
tfmatrix = superimposition_matrix(np.transpose(connection_site), np.transpose(connection_node_spec), usesvd=False)
connection_site_plusone = np.append(connection_site, np.ones([len(connection_site),1]),1) # add a column of ones for dimension agreement
tf_connection_site =[]
for i in range(len(connection_site)):
new_sites = np.dot(tfmatrix, connection_site_plusone[i]) #apply transformation matrix to each building block vector
tf_connection_site.append(new_sites)
tf_connection_site = np.asarray(tf_connection_site) #coordinates of building block connection sites, mapped onto network node sites
tf_connection_site = tf_connection_site[:, :-1] #remove the column of ones, to obtain final set of coordinates
###Apply transformation matrix to all atoms in building block
element_coord_plusone = np.append(element_coord, np.ones([len(element_coord),1]),1)
tf_element_coord=[]
for i in range(len(element_coord)):
new_element= np.dot(tfmatrix, element_coord_plusone[i])
tf_element_coord.append(new_element)
tf_element_coord = np.asarray(tf_element_coord)
tf_element_coord = tf_element_coord[:, :-1]
tf_frac_element_coord=[]
for i in range(len(tf_element_coord)):
frac_element_coord = np.dot(np.transpose(np.linalg.inv(unit_cell)), tf_element_coord[i])
frac_element_coord = frac_element_coord + vertex_coord[j]
tf_frac_element_coord.append(frac_element_coord)
tf_frac_element_coord = np.asarray(tf_frac_element_coord) #building block after transformation, in frac coords
bb_elements.append(elements)
bb_frac_coordinates.append(tf_frac_element_coord)
bb_connectivity.append(connectivity)
bb_elements = np.asarray(bb_elements)
bb_frac_coordinates = np.asarray(bb_frac_coordinates)
bb_connectivity=np.asarray(bb_connectivity)
return bb_elements, bb_frac_coordinates, bb_connectivity