-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconnect_edgeto2nodes.py
474 lines (385 loc) · 19.9 KB
/
connect_edgeto2nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#################
#
# This file is part of
# ToBaCCo - Topologically-Based Crystal Constructor
#
# Copyright 2017 Yamil J. Colon <[email protected]>
# Diego Gomez-Gualdron <[email protected]>
# Ben Bucior <[email protected]>
#
# ToBaCCo is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ToBaCCo is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
#################
import os
import numpy as np
import re
import fnmatch
import itertools
from neighbors import neighbor_edges, neighbor_vertices
from nodes import __node_properties
from transformations import superimposition_matrix
from placing_bb_func import __place_bb
from operator import itemgetter
from edges import __edge_properties
from placing_edge import __place_edge
import sys
import contextlib
#Connect edge to two different nodes
def __edge_to_2nodes(unit_cell, e1_coord, v12_nbors_for_e1, node_1_elements, node_2_elements, edge_elements, node_1_frac_coord, node_2_frac_coord, edge_frac_coord, node_1_connectivity, node_2_connectivity, edge_connectivity):
elements=[]
frac_coords=[]
#Update indexes of atoms in structure, Node 1 first, then Node 2, followed by the Edge atoms.
for j in range(len(node_1_elements)):
if len(node_1_elements[j])==1:#For when the node is a single atom
index = re.split('(\d+)', node_1_elements[j][0][0])
index_number = int(index[1])+len(node_1_elements[0])*j
index_number = str(index_number)
updated_index = index[0]+index_number
elements.append(index[0]+index_number + ' ' + node_1_elements[j][0][1])
frac_coords.append(node_1_frac_coord[j])
elif not len(node_1_elements[j])==1:
for i in range(len(node_1_elements[j])):
index = re.split('(\d+)', node_1_elements[j][i][0])
index_number = int(index[1])+len(node_1_elements[0])*j
index_number = str(index_number)
updated_index = index[0]+index_number
elements.append(index[0]+index_number + ' ' + node_1_elements[j][i][1])
frac_coords.append(node_1_frac_coord[j][i])
for j in range(len(node_2_elements)):
if len(node_2_elements[j])==1:
index = re.split('(\d+)', node_2_elements[j][0][0])
index_number = int(index[1])+len(node_2_elements[0])*j + len(node_1_elements)*len(node_1_elements[0])
index_number = str(index_number)
updated_index = index[0]+index_number
elements.append(index[0]+index_number + ' ' + node_2_elements[j][0][1])
frac_coords.append(node_2_frac_coord[j])
elif not len(node_2_elements[j])==1:
for i in range(len(node_2_elements[j])):
index = re.split('(\d+)', node_2_elements[j][i][0])
index_number = int(index[1])+len(node_2_elements[0])*j + len(node_1_elements)*len(node_1_elements[0])
index_number = str(index_number)
updated_index = index[0]+index_number
elements.append(index[0]+index_number + ' ' + node_2_elements[j][i][1])
frac_coords.append(node_2_frac_coord[j][i])
for j in range(len(edge_elements)):
for i in range(len(edge_elements[j])):
index = re.split('(\d+)', edge_elements[j][i][0])
index_number = int(index[1])+len(edge_elements[0])*j + len(node_1_elements)*len(node_1_elements[0]) + len(node_2_elements)*len(node_2_elements[0])
index_number = str(index_number)
updated_index = index[0]+index_number
elements.append(str(index[0]+index_number + ' ' + edge_elements[j][i][1]))
frac_coords.append(edge_frac_coord[j][i])
#Update indexes of atoms in connectivity
connectivity=[]
for j in range(len(node_1_connectivity)):
for i in range(len(node_1_connectivity[j])):
index_1 = re.split('(\d+)', node_1_connectivity[j][i][0])
index_number_one = int(index_1[1])+len(node_1_elements[0])*j
index_number_one = str(index_number_one)
updated_index_one = index_1[0]+index_number_one
index_2 = re.split('(\d+)', node_1_connectivity[j][i][1])
index_number_two = int(index_2[1])+len(node_1_elements[0])*j
index_number_two = str(index_number_two)
updated_index_two = index_2[0]+index_number_two
connectivity.append(updated_index_one + ' ' + updated_index_two + ' ' + node_1_connectivity[j][i][2] + ' ' + node_1_connectivity[j][i][3] + ' ' + node_1_connectivity[j][i][4])
for j in range(len(node_2_connectivity)):
for i in range(len(node_2_connectivity[j])):
index_1 = re.split('(\d+)', node_2_connectivity[j][i][0])
index_number_one = int(index_1[1])+len(node_2_elements[0])*j + len(node_1_elements)*len(node_1_elements[0])
index_number_one = str(index_number_one)
updated_index_one = index_1[0]+index_number_one
index_2 = re.split('(\d+)', node_2_connectivity[j][i][1])
index_number_two = int(index_2[1])+len(node_2_elements[0])*j + len(node_1_elements)*len(node_1_elements[0])
index_number_two = str(index_number_two)
updated_index_two = index_2[0]+index_number_two
connectivity.append(updated_index_one + ' ' + updated_index_two + ' ' + node_2_connectivity[j][i][2] + ' ' + node_2_connectivity[j][i][3] + ' ' + node_2_connectivity[j][i][4])
for j in range(len(edge_connectivity)):
for i in range(len(edge_connectivity[j])):
index_1 = re.split('(\d+)', edge_connectivity[j][i][0])
index_number_one = int(index_1[1])+len(edge_elements[0])*j + len(node_1_elements)*len(node_1_elements[0]) + len(node_2_elements)*len(node_2_elements[0])
index_number_one = str(index_number_one)
updated_index_one = index_1[0]+index_number_one
index_2 = re.split('(\d+)', edge_connectivity[j][i][1])
index_number_two = int(index_2[1])+len(edge_elements[0])*j + len(node_1_elements)*len(node_1_elements[0]) + len(node_2_elements)*len(node_2_elements[0])
index_number_two = str(index_number_two)
updated_index_two = index_2[0]+index_number_two
connectivity.append(updated_index_one + ' ' + updated_index_two + ' ' + edge_connectivity[j][i][2] + ' ' + edge_connectivity[j][i][3] + ' ' + edge_connectivity[j][i][4])
####Establishing a connection between edge and node
for k in range(len(v12_nbors_for_e1)):
node_1_connection = node_1_elements[v12_nbors_for_e1[k][0]]
node_2_connection = node_2_elements[v12_nbors_for_e1[k][1]]
edge_connection = edge_elements[k]
location_1=[]
connection_frac_coord_1=[]
location_2=[]
connection_frac_coord_2=[]
for i in [i for i, x in enumerate(node_1_connection) if x[0][0][0] == 'X']:
location_1.append(i)
if len(node_1_connection)==1:
connection_frac_coord_1.append(node_1_frac_coord[v12_nbors_for_e1[k][0]])
elif not len(node_1_connection)==1:
connection_frac_coord_1.append(node_1_frac_coord[v12_nbors_for_e1[k][0]][i]) # grab connection coord of first node
for i in [i for i, x in enumerate(node_2_connection) if x[0][0][0] == 'X']:
location_2.append(i)
if len(node_2_connection)==1:
connection_frac_coord_2.append(node_2_frac_coord[v12_nbors_for_e1[k][1]])
elif not len(node_2_connection)==1:
connection_frac_coord_2.append(node_2_frac_coord[v12_nbors_for_e1[k][1]][i]) # grab connection coord of second node
location_edge=[]
edge_conn_frac_coord=[]
for i in [i for i, x in enumerate(edge_connection) if x[0][0][0] == 'X']:
location_edge.append(i)
edge_conn_frac_coord.append(edge_frac_coord[k][i])
###Calculate vectors from node to edge, and from node to connection points
centroid_x_1=[]
centroid_y_1=[]
centroid_z_1=[]
for j in range(len(connection_frac_coord_1)):
centroid_x_1.append(connection_frac_coord_1[j][0])
centroid_y_1.append(connection_frac_coord_1[j][1])
centroid_z_1.append(connection_frac_coord_1[j][2])
centroid_x_1 = sum(centroid_x_1)/len(connection_frac_coord_1)
centroid_y_1 = sum(centroid_y_1)/len(connection_frac_coord_1)
centroid_z_1 = sum(centroid_z_1)/len(connection_frac_coord_1)
centroid_x_2=[]
centroid_y_2=[]
centroid_z_2=[]
for j in range(len(connection_frac_coord_2)):
centroid_x_2.append(connection_frac_coord_2[j][0])
centroid_y_2.append(connection_frac_coord_2[j][1])
centroid_z_2.append(connection_frac_coord_2[j][2])
centroid_x_2 = sum(centroid_x_2)/len(connection_frac_coord_2)
centroid_y_2 = sum(centroid_y_2)/len(connection_frac_coord_2)
centroid_z_2 = sum(centroid_z_2)/len(connection_frac_coord_2)
centroid_1 = [centroid_x_1, centroid_y_1, centroid_z_1]
centroid_2 = [centroid_x_2, centroid_y_2, centroid_z_2]
##Adjust edge_coord for PBCs, node_1
edge_pos_1 = e1_coord[k]
diffa = edge_pos_1[0]-centroid_1[0]
diffb = edge_pos_1[1]-centroid_1[1]
diffc = edge_pos_1[2]-centroid_1[2]
### PERIODIC BOUNDARY CONDITIONS
if diffa > 0.5:
edge_pos_1[0] = edge_pos_1[0] - 1
elif diffa < -0.5:
edge_pos_1[0] = edge_pos_1[0] + 1
if diffb > 0.5:
edge_pos_1[1] = edge_pos_1[1] - 1
elif diffb < -0.5:
edge_pos_1[1] = edge_pos_1[1] + 1
if diffc > 0.5:
edge_pos_1[2] = edge_pos_1[2] - 1
elif diffc < -0.5:
edge_pos_1[2] = edge_pos_1[2] + 1
##Vector node to edge, node_1
node_1_to_edge = edge_pos_1-centroid_1
##Vector edge to node 1
edge_to_node_1 = -node_1_to_edge
##Adjust edge_coord for PBCs, node_2
edge_pos_2 = e1_coord[k]
diffa = edge_pos_2[0]-centroid_2[0]
diffb = edge_pos_2[1]-centroid_2[1]
diffc = edge_pos_2[2]-centroid_2[2]
### PERIODIC BOUNDARY CONDITIONS
if diffa > 0.5:
edge_pos_2[0] = edge_pos_2[0] - 1
elif diffa < -0.5:
edge_pos_2[0] = edge_pos_2[0] + 1
if diffb > 0.5:
edge_pos_2[1] = edge_pos_2[1] - 1
elif diffb < -0.5:
edge_pos_2[1] = edge_pos_2[1] + 1
if diffc > 0.5:
edge_pos_2[2] = edge_pos_2[2] - 1
elif diffc < -0.5:
edge_pos_2[2] = edge_pos_2[2] + 1
##Vector node to edge, node_2
node_2_to_edge = edge_pos_2-centroid_2
##Vector edge to node 2
edge_to_node_2 = -node_2_to_edge
##Vectors node to connection_site, node_1
connection_1_vector=[]
for i in range(len(connection_frac_coord_1)):
connection_1_vector.append(connection_frac_coord_1[i]-centroid_1)
connection_2_vector=[]
for i in range(len(connection_frac_coord_2)):
connection_2_vector.append(connection_frac_coord_2[i]-centroid_2)
##Calculate angle between node-connection site and node-edge vectors, the smallest angles correspond to the sites to be connected
angle_1=[]
if len(node_1_connection)==1:
angle_1.append(0)
elif not len(node_1_connection)==1:
for i in range(len(connection_1_vector)):
angle=np.arccos(np.dot(node_1_to_edge, connection_1_vector[i])/(np.linalg.norm(node_1_to_edge)*np.linalg.norm(connection_1_vector[i])))*180/np.pi
if np.isnan(angle)==True:
angle= np.arccos(round(np.dot(node_1_to_edge, connection_1_vector[i])/(np.linalg.norm(node_1_to_edge)*np.linalg.norm(connection_1_vector[i]))))*180/np.pi
angle_1.append(angle)
angle_2=[]
if len(node_2_connection)==1:
angle_2.append(0)
elif not len(node_2_connection)==1:
for i in range(len(connection_2_vector)):
angle=np.arccos(np.dot(node_2_to_edge, connection_2_vector[i])/(np.linalg.norm(node_2_to_edge)*np.linalg.norm(connection_2_vector[i])))*180/np.pi
if np.isnan(angle)==True:
angle= np.arccos(round(np.dot(node_2_to_edge, connection_2_vector[i])/(np.linalg.norm(node_2_to_edge)*np.linalg.norm(connection_2_vector[i]))))*180/np.pi
angle_2.append(angle)
edge_connection_vector=[]
#Vectors edge to connection site
xi_plus=[]##positions to return connection sites back to their original positions after connection
xi_minus=[]
yi_plus=[]
yi_minus=[]
zi_plus=[]
zi_minus=[]
for i in range(len(edge_conn_frac_coord)):
diffa_edge = edge_conn_frac_coord[i][0] - e1_coord[k][0]
diffb_edge = edge_conn_frac_coord[i][1] - e1_coord[k][1]
diffc_edge = edge_conn_frac_coord[i][2] - e1_coord[k][2]
if diffa_edge > 0.5:
edge_conn_frac_coord[i][0] = edge_conn_frac_coord[i][0] - 1
xi_plus.append(i)
elif diffa_edge < -0.5:
edge_conn_frac_coord[i][0] = edge_conn_frac_coord[i][0] + 1
xi_minus.append(i)
if diffb_edge > 0.5:
edge_conn_frac_coord[i][1] = edge_conn_frac_coord[i][1] - 1
yi_plus.append(i)
elif diffb_edge < -0.5:
edge_conn_frac_coord[i][1] = edge_conn_frac_coord[i][1] + 1
yi_minus.append(i)
if diffc_edge > 0.5:
edge_conn_frac_coord[i][2] = edge_conn_frac_coord[i][2] - 1
zi_plus.append(i)
elif diffc_edge < -0.5:
edge_conn_frac_coord[i][2] = edge_conn_frac_coord[i][2] + 1
zi_minus.append(i)
edge_connection_vector.append(edge_conn_frac_coord[i] - e1_coord[k])
index_of_connection_1 = min(enumerate(angle_1), key=itemgetter(1))[0] #connection site of node_1
index_of_connection_2 = min(enumerate(angle_2), key=itemgetter(1))[0] #connection site of node_2
angle_edge_1 = []
for i in range(len(edge_connection_vector)):
angle_edge_1.append(round(np.arccos(round(np.dot(edge_to_node_1, edge_connection_vector[i])/(np.linalg.norm(edge_to_node_1)*np.linalg.norm(edge_connection_vector[i]))))*180/np.pi))
angle_edge_2 = []
for i in range(len(edge_connection_vector)):
angle_edge_2.append(round(np.arccos(round(np.dot(edge_to_node_2, edge_connection_vector[i])/(np.linalg.norm(edge_to_node_2)*np.linalg.norm(edge_connection_vector[i]))))*180/np.pi))
index_conn_edge_1 = min(enumerate(angle_edge_1), key=itemgetter(1))[0]
index_conn_edge_2 = min(enumerate(angle_edge_2), key=itemgetter(1))[0]
##After connection sites have been identified, return connection sites to original position
for i in range(len(xi_plus)):
edge_frac_coord[k][location_edge[xi_plus[i]]][0] = edge_frac_coord[k][location_edge[xi_plus[i]]][0] +1
for i in range(len(xi_minus)):
edge_frac_coord[k][location_edge[xi_minus[i]]][0] = edge_frac_coord[k][location_edge[xi_minus[i]]][0] -1
for i in range(len(yi_plus)):
edge_frac_coord[k][location_edge[yi_plus[i]]][1] = edge_frac_coord[k][location_edge[yi_plus[i]]][1] +1
for i in range(len(yi_minus)):
edge_frac_coord[k][location_edge[yi_minus[i]]][1] = edge_frac_coord[k][location_edge[yi_minus[i]]][1] -1
for i in range(len(zi_plus)):
edge_frac_coord[k][location_edge[zi_plus[i]]][2] = edge_frac_coord[k][location_edge[zi_plus[i]]][2] +1
for i in range(len(zi_minus)):
edge_frac_coord[k][location_edge[zi_minus[i]]][2] = edge_frac_coord[k][location_edge[zi_minus[i]]][2] -1
##Coordinates of connection sites to be connected
if len(node_1_connection)==1:
connection_node_1_coord = node_1_frac_coord[v12_nbors_for_e1[k][0]]
elif not len(node_1_connection)==1:
connection_node_1_coord = node_1_frac_coord[v12_nbors_for_e1[k][0]][location_1[index_of_connection_1]]
if len(node_2_connection)==1:
connection_node_2_coord = node_2_frac_coord[v12_nbors_for_e1[k][1]]
elif not len(node_2_connection)==1:
connection_node_2_coord = node_2_frac_coord[v12_nbors_for_e1[k][1]][location_2[index_of_connection_2]]
edge_conn_to_node_1 = edge_frac_coord[k][location_edge[index_conn_edge_1]]
edge_conn_to_node_2 = edge_frac_coord[k][location_edge[index_conn_edge_2]]
PBC_1 = edge_conn_to_node_1
PBC_2 = connection_node_1_coord
connection_bond_EtoN1 = np.linalg.norm(np.dot(np.transpose(unit_cell), connection_node_1_coord) - np.dot(np.transpose(unit_cell), edge_conn_to_node_1))
diffa_conn = PBC_2[0]-PBC_1[0]
diffb_conn = PBC_2[1]-PBC_1[1]
diffc_conn = PBC_2[2]-PBC_1[2]
symm = [5,5,5]
symm_alt = [5,5,5]
#### PERIODIC BOUNDARY CONDITIONS
if diffa_conn > 0.5:
symm[0]=4
symm_alt[0] = 6
elif diffa_conn < -0.5:
symm[0]=6
symm_alt[0] = 4
if diffb_conn > 0.5:
symm[1]=4
symm_alt[1] = 6
elif diffb_conn < -0.5:
symm[1]=6
symm_alt[1] = 4
if diffc_conn > 0.5:
symm[2]=4
symm_alt[2] =6
elif diffc_conn < -0.5:
symm[2]=6
symm_alt[2] =4
index_conn_1 = location_edge[index_conn_edge_1] + 1
atom_index_conn_1 = index_conn_1 + len(edge_elements[0])*k + len(node_2_elements[0])*len(node_2_elements) + len(node_1_elements)*len(node_1_elements[0])
index_conn_2 = location_1[index_of_connection_1] + 1
atom_index_conn_2 = index_conn_2 + len(node_1_elements[0])*v12_nbors_for_e1[k][0]
##Add connection to connectivity information, taking into account periodic boundary conditions
if all(x==5 for x in symm):
connectivity.append(edge_connection[location_edge[index_conn_edge_1]][0][0] + str(atom_index_conn_1) + ' ' + node_1_connection[location_1[index_of_connection_1]][0][0] + str(atom_index_conn_2) + ' ' + str(connection_bond_EtoN1) + ' ' + '.' + ' ' + 'S')
elif not all(x==5 for x in symm):#For when connection crosses boundaries
connectivity.append(edge_connection[location_edge[index_conn_edge_1]][0][0] + str(atom_index_conn_1) + ' ' + node_1_connection[location_1[index_of_connection_1]][0][0] + str(atom_index_conn_2) + ' ' + str(connection_bond_EtoN1) + ' ' + '1_' + str(symm[0])+str(symm[1]) + str(symm[2]) + ' ' + 'S')
connectivity.append(node_1_connection[location_1[index_of_connection_1]][0][0] + str(atom_index_conn_2) + ' ' + edge_connection[location_edge[index_conn_edge_1]][0][0] + str(atom_index_conn_1) + ' ' + str(connection_bond_EtoN1) + ' ' + '1_' + str(symm_alt[0])+str(symm_alt[1]) + str(symm_alt[2]) + ' ' + 'S')
PBC_1 = edge_conn_to_node_2
PBC_2 = connection_node_2_coord
connection_bond_EtoN2 = np.linalg.norm(np.dot(np.transpose(unit_cell), connection_node_2_coord) - np.dot(np.transpose(unit_cell), edge_conn_to_node_2))
diffa_conn = PBC_2[0]-PBC_1[0]
diffb_conn = PBC_2[1]-PBC_1[1]
diffc_conn = PBC_2[2]-PBC_1[2]
symm = [5,5,5]
symm_alt = [5,5,5]
#### PERIODIC BOUNDARY CONDITIONS
if diffa_conn > 0.5:
symm[0]=4
symm_alt[0]=6
elif diffa_conn < -0.5:
symm[0]=6
symm_alt[0]=4
if diffb_conn > 0.5:
symm[1]=4
symm_alt[1] = 6
elif diffb_conn < -0.5:
symm[1]=6
symm_alt[1] = 4
if diffc_conn > 0.5:
symm[2]=4
symm_alt[2] = 6
elif diffc_conn < -0.5:
symm[2]=6
symm_alt[2] =4
index_conn_1 = location_edge[index_conn_edge_2] + 1
atom_index_conn_1 = index_conn_1 + len(edge_elements[0])*k + len(node_2_elements[0])*len(node_2_elements) + len(node_1_elements)*len(node_1_elements[0])
index_conn_2 = location_2[index_of_connection_2] + 1
atom_index_conn_2 = index_conn_2 + len(node_2_elements[0])*v12_nbors_for_e1[k][1] + len(node_1_elements)*len(node_1_elements[0])
##Add connection to connectivity information, taking into account periodic boundary conditions
if all(x==5 for x in symm):
connectivity.append(edge_connection[location_edge[index_conn_edge_2]][0][0] + str(atom_index_conn_1) + ' ' + node_2_connection[location_2[index_of_connection_2]][0][0] + str(atom_index_conn_2) + ' ' + str(connection_bond_EtoN2) + ' ' + '.' + ' ' + 'S')
elif not all(x==5 for x in symm):#For when connection crosses boundaries
connectivity.append(edge_connection[location_edge[index_conn_edge_2]][0][0] + str(atom_index_conn_1) + ' ' + node_2_connection[location_2[index_of_connection_2]][0][0] + str(atom_index_conn_2) + ' ' + str(connection_bond_EtoN2) + ' ' + '1_' + str(symm[0])+str(symm[1]) + str(symm[2]) + ' ' + 'S')
connectivity.append(node_2_connection[location_2[index_of_connection_2]][0][0] + str(atom_index_conn_2) + ' ' + edge_connection[location_edge[index_conn_edge_2]][0][0] + str(atom_index_conn_1) + ' ' + str(connection_bond_EtoN2) + ' ' + '1_' + str(symm_alt[0])+str(symm_alt[1]) + str(symm_alt[2]) + ' ' + 'S')
#Change to .cif format
new_frac_coords=[]
for j in range(len(frac_coords)):
for i in range(len(frac_coords[j])):
new_frac_coords.append('{:f}'.format(float(frac_coords[j][i])))
new_frac_coords = np.asarray(new_frac_coords)
new_frac_coords = np.asarray(np.split(new_frac_coords, len(elements)))
element_and_frac_coord = np.asarray(np.column_stack((elements, new_frac_coords)))
def fmtcols(mylist, cols):
lines = ("\t".join(mylist[i:i+cols]) for i in xrange(0,len(mylist),cols))
return '\n'.join(lines)
new_connectivity = fmtcols(connectivity, 1)
return element_and_frac_coord, new_connectivity