-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDESCRIPTION
60 lines (60 loc) · 1.89 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Package: tmle3shift
Title: Targeted Learning of the Causal Effects of Stochastic Interventions
Version: 0.2.2
Authors@R: c(
person("Nima", "Hejazi", email = "[email protected]",
role = c("aut", "cre", "cph"),
comment = c(ORCID = "0000-0002-7127-2789")),
person("Jeremy", "Coyle", email = "[email protected]",
role = c("aut"),
comment = c(ORCID = "0000-0002-9874-6649")),
person("Mark", "van der Laan", email = "[email protected]",
role = c("aut", "ths"),
comment = c(ORCID = "0000-0003-1432-5511"))
)
Maintainer: Nima Hejazi <[email protected]>
Description: Targeted maximum likelihood estimation (TMLE) of population-level
causal effects under stochastic treatment regimes and related nonparametric
variable importance analyses. Tools are provided for TML estimation of the
counterfactual mean under a stochastic intervention characterized as a
modified treatment policy, such as treatment policies that shift the natural
value of the exposure. The causal parameter and estimation were described in
Díaz and van der Laan (2013) <doi:10.1111/j.1541-0420.2011.01685.x> and an
improved estimation approach was given by Díaz and van der Laan (2018)
<doi:10.1007/978-3-319-65304-4_14>.
Depends:
R (>= 3.4.0)
License: GPL-3
Imports:
R6,
uuid,
methods,
data.table,
assertthat,
tmle3 (>= 0.2.0)
Suggests:
testthat,
knitr,
rmarkdown,
covr,
stats,
ggplot2,
sl3 (>= 1.4.5),
txshift (>= 0.3.8),
haldensify (>= 0.2.3),
hal9001,
xgboost,
speedglm,
Rsolnp,
nnls
Remotes:
github::tlverse/sl3,
github::tlverse/tmle3
URL: https://tlverse.org/tmle3shift
BugReports: https://github.com/tlverse/tmle3shift/issues
Encoding: UTF-8
LazyData: true
LazyLoad: yes
VignetteBuilder: knitr
RoxygenNote: 7.3.2
Roxygen: list(markdown = TRUE, r6 = FALSE)