-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathTwoPhase.tla
176 lines (163 loc) · 9.89 KB
/
TwoPhase.tla
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
------------------------------- MODULE TwoPhase -----------------------------
(***************************************************************************)
(* This specification describes the Two-Phase Commit protocol, in which a *)
(* transaction manager (TM) coordinates the resource managers (RMs) to *)
(* implement the Transaction Commit specification of module $TCommit$. In *)
(* this specification, RMs spontaneously issue $Prepared$ messages. We *)
(* ignore the $Prepare$ messages that the TM can send to the *)
(* RMs.\vspace{.4em} *)
(* *)
(* For simplicity, we also eliminate $Abort$ messages sent by an RM when *)
(* it decides to abort. Such a message would cause the TM to abort the *)
(* transaction, an event represented here by the TM spontaneously deciding *)
(* to abort.\vspace{.4em} *)
(* *)
(* This specification describes only the safety properties of the *)
(* protocol--that is, what is allowed to happen. What must happen would *)
(* be described by liveness properties, which we do not specify. *)
(***************************************************************************)
CONSTANT RM \* The set of resource managers
VARIABLES
rmState, \* $rmState[rm]$ is the state of resource manager RM.
tmState, \* The state of the transaction manager.
tmPrepared, \* The set of RMs from which the TM has received $"Prepared"$
\* messages.
msgs
(***********************************************************************)
(* In the protocol, processes communicate with one another by sending *)
(* messages. Since we are specifying only safety, a process is not *)
(* required to receive a message, so there is no need to model message *)
(* loss. (There's no difference between a process not being able to *)
(* receive a message because the message was lost and a process simply *)
(* ignoring the message.) We therefore represent message passing with *)
(* a variable $msgs$ whose value is the set of all messages that have *)
(* been sent. Messages are never removed from $msgs$. An action *)
(* that, in an implementation, would be enabled by the receipt of a *)
(* certain message is here enabled by the existence of that message in *)
(* $msgs$. (Receipt of the same message twice is therefore allowed; *)
(* but in this particular protocol, receiving a message for the second *)
(* time has no effect.) *)
(***********************************************************************)
Message ==
(*************************************************************************)
(* The set of all possible messages. Messages of type $"Prepared"$ are *)
(* sent from the RM indicated by the message's $rm$ field to the TM\@. *)
(* Messages of type $"Commit"$ and $"Abort"$ are broadcast by the TM, to *)
(* be received by all RMs. The set $msgs$ contains just a single copy *)
(* of such a message. *)
(*************************************************************************)
[type : {"Prepared"}, rm : RM] \cup [type : {"Commit", "Abort"}]
TPTypeOK ==
(*************************************************************************)
(* The type-correctness invariant *)
(*************************************************************************)
/\ rmState \in [RM -> {"working", "prepared", "committed", "aborted"}]
/\ tmState \in {"init", "committed", "aborted"}
/\ tmPrepared \subseteq RM
/\ msgs \subseteq Message
TPInit ==
(*************************************************************************)
(* The initial predicate. *)
(*************************************************************************)
/\ rmState = [rm \in RM |-> "working"]
/\ tmState = "init"
/\ tmPrepared = {}
/\ msgs = {}
-----------------------------------------------------------------------------
(***************************************************************************)
(* We now define the actions that may be performed by the processes, first *)
(* the TM's actions, then the RMs' actions. *)
(***************************************************************************)
TMRcvPrepared(rm) ==
(*************************************************************************)
(* The TM receives a $"Prepared"$ message from resource manager $rm$. *)
(*************************************************************************)
/\ tmState = "init"
/\ [type |-> "Prepared", rm |-> rm] \in msgs
/\ tmPrepared' = tmPrepared \cup {rm}
/\ UNCHANGED <<rmState, tmState, msgs>>
TMCommit ==
(*************************************************************************)
(* The TM commits the transaction; enabled iff the TM is in its initial *)
(* state and every RM has sent a $"Prepared"$ message. *)
(*************************************************************************)
/\ tmState = "init"
/\ tmPrepared = RM
/\ tmState' = "committed"
/\ msgs' = msgs \cup {[type |-> "Commit"]}
/\ UNCHANGED <<rmState, tmPrepared>>
TMAbort ==
(*************************************************************************)
(* The TM spontaneously aborts the transaction. *)
(*************************************************************************)
/\ tmState = "init"
/\ tmState' = "aborted"
/\ msgs' = msgs \cup {[type |-> "Abort"]}
/\ UNCHANGED <<rmState, tmPrepared>>
RMPrepare(rm) ==
(*************************************************************************)
(* Resource manager $rm$ prepares. *)
(*************************************************************************)
/\ rmState[rm] = "working"
/\ rmState' = [rmState EXCEPT ![rm] = "prepared"]
/\ msgs' = msgs \cup {[type |-> "Prepared", rm |-> rm]}
/\ UNCHANGED <<tmState, tmPrepared>>
RMChooseToAbort(rm) ==
(*************************************************************************)
(* Resource manager $rm$ spontaneously decides to abort. As noted *)
(* above, $rm$ does not send any message in our simplified spec. *)
(*************************************************************************)
/\ rmState[rm] = "working"
/\ rmState' = [rmState EXCEPT ![rm] = "aborted"]
/\ UNCHANGED <<tmState, tmPrepared, msgs>>
RMRcvCommitMsg(rm) ==
(*************************************************************************)
(* Resource manager $rm$ is told by the TM to commit. *)
(*************************************************************************)
/\ [type |-> "Commit"] \in msgs
/\ rmState' = [rmState EXCEPT ![rm] = "committed"]
/\ UNCHANGED <<tmState, tmPrepared, msgs>>
RMRcvAbortMsg(rm) ==
(*************************************************************************)
(* Resource manager $rm$ is told by the TM to abort. *)
(*************************************************************************)
/\ [type |-> "Abort"] \in msgs
/\ rmState' = [rmState EXCEPT ![rm] = "aborted"]
/\ UNCHANGED <<tmState, tmPrepared, msgs>>
TPNext ==
\/ TMCommit \/ TMAbort
\/ \E rm \in RM :
TMRcvPrepared(rm) \/ RMPrepare(rm) \/ RMChooseToAbort(rm)
\/ RMRcvCommitMsg(rm) \/ RMRcvAbortMsg(rm)
-----------------------------------------------------------------------------
TPSpec == TPInit /\ [][TPNext]_<<rmState, tmState, tmPrepared, msgs>>
(*************************************************************************)
(* The complete spec of the Two-Phase Commit protocol. *)
(*************************************************************************)
THEOREM TPSpec => []TPTypeOK
(*************************************************************************)
(* This theorem asserts that the type-correctness predicate TPTypeOK is *)
(* an invariant of the specification. *)
(*************************************************************************)
-----------------------------------------------------------------------------
(***************************************************************************)
(* We now assert that the Two-Phase Commit protocol implements the *)
(* Transaction Commit protocol of module $TCommit$. The following *)
(* statement defines $TC!TCSpec$ to be formula $TCSpec$ of module *)
(* $TCommit$. (The TLA$^+$ \textsc{instance} statement is used to rename *)
(* the operators defined in module $TCommit$ avoids any name conflicts *)
(* that might exist with operators in the current module.) *)
(***************************************************************************)
TC == INSTANCE TCommit
THEOREM TPSpec => TC!TCSpec
(*************************************************************************)
(* This theorem asserts that the specification TPSpec of the Two-Phase *)
(* Commit protocol implements the specification TCSpec of the *)
(* Transaction Commit protocol. *)
(*************************************************************************)
(***************************************************************************)
(* The two theorems in this module have been checked with TLC for six *)
(* RMs, a configuration with 50816 reachable states, in a little over a *)
(* minute on a 1 GHz PC. *)
(***************************************************************************)
=============================================================================