This repository has been archived by the owner on Mar 17, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2016-01-21--Tischi--Correct_3D_Drift_Plus.py
662 lines (582 loc) · 25.1 KB
/
2016-01-21--Tischi--Correct_3D_Drift_Plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
# Robert Bryson-Richardson and Albert Cardona 2010-10-08 at Estoril, Portugal
# EMBO Developmental Imaging course by Gabriel Martins
#
# Register time frames (stacks) to each other using Stitching_3D library
# to compute translations only, in all 3 spatial axes.
# Operates on a virtual stack.
# 23/1/13 -
# added user dialog to make use of virtual stack an option
# 10/01/16-
# Christian Tischer ([email protected])
# major changes and additions:
# - it now also works for 2D time-series (used to be 3D only)
# - option: measure drift on multiple timescales (this allows to also find slow drift components of less than 1 pixel per frame)
# - option: correct sub-pixel drift computing the shifted images using TransformJ
# - option: if a ROI is put on the image, only this part of the image is considered for drift computation
# the ROI is moved along with the detected drift thereby tracking the structure of interest
# - macro recording is compatible with previous version
from ij import VirtualStack, IJ, CompositeImage, ImageStack, ImagePlus
from ij.process import ColorProcessor
from ij.io import DirectoryChooser, FileSaver
from ij.gui import GenericDialog, YesNoCancelDialog, Roi
from mpicbg.imglib.image import ImagePlusAdapter
from mpicbg.imglib.algorithm.fft import PhaseCorrelation
from javax.vecmath import Point3i
from javax.vecmath import Point3f
from java.io import File, FilenameFilter
from java.lang import Integer
import math
from jarray import zeros, array
# sub-pixel translation using imagescience
from imagescience.image import Image
from imagescience.transform import Translate
# sub-pixel translation using imglib2
from net.imagej.axis import Axes
from net.imglib2.img.display.imagej import ImageJFunctions
from net.imglib2.realtransform import RealViews, Translation3D
from net.imglib2.view import Views
from net.imglib2.img.imageplus import ImagePlusImgs
from net.imglib2.converter import Converters
from net.imglib2.converter.readwrite import RealFloatSamplerConverter
from net.imglib2.interpolation.randomaccess import NLinearInterpolatorFactory
def translate_using_imglib2(imp, dx, dy, dz):
print "imp channels",imp.getNChannels()
# todo:
# if multiple channels use Duplicator to translate each channel individually
## wrap
# http://javadoc.imagej.net/ImgLib2/net/imglib2/img/imageplus/ImagePlusImg.html
img = ImagePlusImgs.from(imp.duplicate())
print "dimensions:",img.numDimensions()
print img.getChannels()
## prepare image
print "img",img
ddd
extended = Views.extendBorder(img)
#print "extended",extended
#print "extended",extended.dimension(1)
dims = zeros(4, 'l')
img.dimensions(dims)
print "dims",dims
converted = Converters.convert(extended, RealFloatSamplerConverter())
composite = Views.collapseReal(converted, imp.getNChannels())
print "composite",composite
interpolant = Views.interpolate(composite, NLinearInterpolatorFactory())
#print "interpolant",interpolant
transformed = RealViews.affine(interpolant, Translation3D(dx, dy, dz))
print "transformed", transformed
cropped = Views.interval(transformed, img)
print "cropped.numDimensions()", cropped.numDimensions()
print "cropped",cropped
## wrap back and return
bd = imp.getBitDepth()
# maybe simply wrap works?
if bd==8:
return(ImageJFunctions.wrapUnsignedByte(cropped,"imglib2"))
elif bd == 16:
return(ImageJFunctions.wrapUnsignedShort(cropped,"imglib2"))
elif bd == 32:
return(ImageJFunctions.wrapFloat(cropped,"imglib2"))
else:
return None
def translate_using_imagescience(imp_tmpstack, dx, dy, dz):
translator = Translate()
output = translator.run(Image.wrap(imp_tmpstack), dx, dy, dz, Translate.LINEAR)
return output.imageplus()
def compute_stitch(imp1, imp2):
""" Compute a Point3i that expressed the translation of imp2 relative to imp1."""
phc = PhaseCorrelation(ImagePlusAdapter.wrap(imp1), ImagePlusAdapter.wrap(imp2), 5, True)
phc.process()
p = phc.getShift().getPosition()
if len(p)==3: # 3D data
p3 = p
elif len(p)==2: # 2D data: add zero shift
p3 = [p[0],p[1],0]
return Point3i(p3)
def extract_frame(imp, frame, channel):
""" From a VirtualStack that is a hyperstack, contained in imp,
extract the timepoint frame as an ImageStack, and return it.
It will do so only for the given channel. """
stack = imp.getStack() # multi-time point virtual stack
vs = ImageStack(imp.width, imp.height, None)
for s in range(1, imp.getNSlices()+1):
i = imp.getStackIndex(channel, s, frame)
vs.addSlice(str(s), stack.getProcessor(i))
return vs
def extract_frame_process_roi(imp, frame, channel, process, roi):
# extract frame and channel
imp_frame = ImagePlus("", extract_frame(imp, frame, channel)).duplicate()
# check for roi and crop
if roi != None:
#print roi.getBounds()
imp_frame.setRoi(roi)
IJ.run(imp_frame, "Crop", "")
# process
if process:
IJ.run(imp_frame, "Mean 3D...", "x=1 y=1 z=0");
IJ.run(imp_frame, "Find Edges", "stack");
# return
return imp_frame
def add_Point3f(p1, p2):
p3 = Point3f(0,0,0)
p3.x = p1.x + p2.x
p3.y = p1.y + p2.y
p3.z = p1.z + p2.z
return p3
def subtract_Point3f(p1, p2):
p3 = Point3f(0,0,0)
p3.x = p1.x - p2.x
p3.y = p1.y - p2.y
p3.z = p1.z - p2.z
return p3
def shift_between_rois(roi2, roi1):
""" computes the relative xy shift between two rois
"""
dr = Point3f(0,0,0)
dr.x = roi2.getBounds().x - roi1.getBounds().x
dr.y = roi2.getBounds().y - roi1.getBounds().y
dr.z = 0
return dr
def shift_roi(imp, roi, dr):
""" shifts a roi in x,y by dr.x and dr.y
if the shift would cause the roi to be outside the imp,
it only shifts as much as possible maintaining the width and height
of the input roi
"""
if roi == None:
return roi
else:
r = roi.getBounds()
#print r, dr.x, dr.y, imp.width, imp.height
# init x,y coordinates of new shifted roi
sx = 0
sy = 0
# x shift
if (r.x + dr.x) < 0:
sx = 0
elif (r.x + dr.x + r.width) > imp.width:
sx = int(imp.width-r.width)
else:
sx = r.x + int(dr.x)
# y shift
if (r.y + dr.y) < 0:
sy = 0
elif (r.y + dr.y + r.height) > imp.height:
sy = int(imp.height-r.height)
else:
sy = r.y + int(dr.y)
# return shifted roi
shifted_roi = Roi(sx, sy, r.width, r.height)
#print shifted_roi
return shifted_roi
def compute_and_update_frame_translations_dt(imp, channel, dt, process, shifts = None):
""" imp contains a hyper virtual stack, and we want to compute
the X,Y,Z translation between every t and t+dt time points in it
using the given preferred channel.
if shifts were already determined at other (lower) dt
they will be used and updated.
"""
nt = imp.getNFrames()
# get roi (could be None)
roi = imp.getRoi()
if roi:
print "ROI is at",roi.getBounds()
# init shifts
if shifts == None:
shifts = []
for t in range(nt):
shifts.append(Point3f(0,0,0))
# compute shifts
IJ.showProgress(0)
for t in range(dt, nt+dt, dt):
if t > nt-1: # together with above range till nt+dt this ensures that the last data points are not missed out
t = nt-1 # nt-1 is the last shift (0-based)
IJ.log(" between frames "+str(t-dt+1)+" and "+str(t+1))
# get (cropped and processed) image at t-dt
roi1 = shift_roi(imp, roi, shifts[t-dt])
imp1 = extract_frame_process_roi(imp, t+1-dt, channel, process, roi1)
# get (cropped and processed) image at t-dt
roi2 = shift_roi(imp, roi, shifts[t])
imp2 = extract_frame_process_roi(imp, t+1, channel, process, roi2)
if roi:
print "ROI at frame",t-dt+1,"is",roi1.getBounds()
print "ROI at frame",t+1,"is",roi2.getBounds()
# compute shift
local_new_shift = compute_stitch(imp2, imp1)
if roi: # total shift is shift of rois plus measured drift
print "correcting measured drift of",local_new_shift,"for roi shift:",shift_between_rois(roi2, roi1)
local_new_shift = add_Point3f(local_new_shift, shift_between_rois(roi2, roi1))
# determine the shift that we knew alrady
local_shift = subtract_Point3f(shifts[t],shifts[t-dt])
# compute difference between new and old measurement (which come from different dt)
add_shift = subtract_Point3f(local_new_shift,local_shift)
print "++ old shift between %s and %s: dx=%s, dy=%s, dz=%s" % (int(t-dt+1),int(t+1),local_shift.x,local_shift.y,local_shift.z)
print "++ add shift between %s and %s: dx=%s, dy=%s, dz=%s" % (int(t-dt+1),int(t+1),add_shift.x,add_shift.y,add_shift.z)
# update shifts from t-dt to the end (assuming that the measured local shift will presist till the end)
for i,tt in enumerate(range(t-dt,nt)):
# for i>dt below expression basically is a linear drift predicition for the frames at tt>t
# this is only important for predicting the best shift of the ROIs
# as the drifts will be corrected by the next measurements
shifts[tt].x += 1.0*i/dt * add_shift.x
shifts[tt].y += 1.0*i/dt * add_shift.y
shifts[tt].z += 1.0*i/dt * add_shift.z
print "updated shift till frame",tt+1,"is",shifts[tt].x,shifts[tt].y,shifts[tt].z
IJ.showProgress(1.0*t/(nt+1))
IJ.showProgress(1)
return shifts
def convert_shifts_to_integer(shifts):
int_shifts = []
for shift in shifts:
int_shifts.append(Point3i(int(round(shift.x)),int(round(shift.y)),int(round(shift.z))))
return int_shifts
def compute_min_max(shifts):
""" Find out the top left up corner, and the right bottom down corner,
namely the bounds of the new virtual stack to create.
Expects absolute shifts. """
minx = Integer.MAX_VALUE
miny = Integer.MAX_VALUE
minz = Integer.MAX_VALUE
maxx = -Integer.MAX_VALUE
maxy = -Integer.MAX_VALUE
maxz = -Integer.MAX_VALUE
for shift in shifts:
minx = min(minx, shift.x)
miny = min(miny, shift.y)
minz = min(minz, shift.z)
maxx = max(maxx, shift.x)
maxy = max(maxy, shift.y)
maxz = max(maxz, shift.z)
return minx, miny, minz, maxx, maxy, maxz
def zero_pad(num, digits):
""" for 34, 4 --> '0034' """
str_num = str(num)
while (len(str_num) < digits):
str_num = '0' + str_num
return str_num
def invert_shifts(shifts):
""" invert shifts such that they can be used for correction.
"""
for shift in shifts:
shift.x *= -1
shift.y *= -1
shift.z *= -1
return shifts
def register_hyperstack(imp, channel, shifts, target_folder, virtual):
""" Takes the imp, determines the x,y,z drift for each pair of time points, using the preferred given channel,
and outputs as a hyperstack."""
# Compute bounds of the new volume,
# which accounts for all translations:
minx, miny, minz, maxx, maxy, maxz = compute_min_max(shifts)
# Make shifts relative to new canvas dimensions
# so that the min values become 0,0,0
for shift in shifts:
shift.x -= minx
shift.y -= miny
shift.z -= minz
#print "shifts relative to new dimensions:"
#for s in shifts:
# print s.x, s.y, s.z
# new canvas dimensions:r
width = imp.width + maxx - minx
height = maxy - miny + imp.height
slices = maxz - minz + imp.getNSlices()
print "New dimensions:", width, height, slices
# Prepare empty slice to pad in Z when necessary
empty = imp.getProcessor().createProcessor(width, height)
# if it's RGB, fill the empty slice with blackness
if isinstance(empty, ColorProcessor):
empty.setValue(0)
empty.fill()
# Write all slices to files:
stack = imp.getStack()
if virtual is False:
registeredstack = ImageStack(width, height, imp.getProcessor().getColorModel())
names = []
for frame in range(1, imp.getNFrames()+1):
shift = shifts[frame-1]
print "frame",frame,"correcting drift",-shift.x-minx,-shift.y-miny,-shift.z-minz
IJ.log(" frame "+str(frame)+" correcting drift "+str(-shift.x-minx)+","+str(-shift.y-miny)+","+str(-shift.z-minz))
fr = "t" + zero_pad(frame, len(str(imp.getNFrames())))
# Pad with empty slices before reaching the first slice
for s in range(shift.z):
ss = "_z" + zero_pad(s + 1, len(str(slices))) # slices start at 1
for ch in range(1, imp.getNChannels()+1):
name = fr + ss + "_c" + zero_pad(ch, len(str(imp.getNChannels()))) +".tif"
names.append(name)
if virtual is True:
currentslice = ImagePlus("", empty)
currentslice.setCalibration(imp.getCalibration().copy())
currentslice.setProperty("Info", imp.getProperty("Info"))
FileSaver(currentslice).saveAsTiff(target_folder + "/" + name)
else:
empty = imp.getProcessor().createProcessor(width, height)
registeredstack.addSlice(str(name), empty)
# Add all proper slices
stack = imp.getStack()
for s in range(1, imp.getNSlices()+1):
ss = "_z" + zero_pad(s + shift.z, len(str(slices)))
for ch in range(1, imp.getNChannels()+1):
ip = stack.getProcessor(imp.getStackIndex(ch, s, frame))
ip2 = ip.createProcessor(width, height) # potentially larger
ip2.insert(ip, shift.x, shift.y)
name = fr + ss + "_c" + zero_pad(ch, len(str(imp.getNChannels()))) +".tif"
names.append(name)
if virtual is True:
currentslice = ImagePlus("", ip2)
currentslice.setCalibration(imp.getCalibration().copy())
currentslice.setProperty("Info", imp.getProperty("Info"));
FileSaver(currentslice).saveAsTiff(target_folder + "/" + name)
else:
registeredstack.addSlice(str(name), ip2)
# Pad the end
for s in range(shift.z + imp.getNSlices(), slices):
ss = "_z" + zero_pad(s + 1, len(str(slices)))
for ch in range(1, imp.getNChannels()+1):
name = fr + ss + "_c" + zero_pad(ch, len(str(imp.getNChannels()))) +".tif"
names.append(name)
if virtual is True:
currentslice = ImagePlus("", empty)
currentslice.setCalibration(imp.getCalibration().copy())
currentslice.setProperty("Info", imp.getProperty("Info"))
FileSaver(currentslice).saveAsTiff(target_folder + "/" + name)
else:
registeredstack.addSlice(str(name), empty)
if virtual is True:
# Create virtual hyper stack with the result
registeredstack = VirtualStack(width, height, None, target_folder)
for name in names:
registeredstack.addSlice(name)
registeredstack_imp = ImagePlus("registered time points", registeredstack)
registeredstack_imp.setDimensions(imp.getNChannels(), len(names) / (imp.getNChannels() * imp.getNFrames()), imp.getNFrames())
registeredstack_imp.setCalibration(imp.getCalibration().copy())
registeredstack_imp.setOpenAsHyperStack(True)
else:
registeredstack_imp = ImagePlus("registered time points", registeredstack)
registeredstack_imp.setCalibration(imp.getCalibration().copy())
registeredstack_imp.setProperty("Info", imp.getProperty("Info"))
registeredstack_imp.setDimensions(imp.getNChannels(), len(names) / (imp.getNChannels() * imp.getNFrames()), imp.getNFrames())
registeredstack_imp.setOpenAsHyperStack(True)
if 1 == registeredstack_imp.getNChannels():
return registeredstack_imp
#IJ.log("\nHyperstack dimensions: time frames:" + str(registeredstack_imp.getNFrames()) + ", slices: " + str(registeredstack_imp.getNSlices()) + ", channels: " + str(registeredstack_imp.getNChannels()))
# Else, as composite
mode = CompositeImage.COLOR;
if isinstance(imp, CompositeImage):
mode = imp.getMode()
else:
return registeredstack_imp
return CompositeImage(registeredstack_imp, mode)
def register_hyperstack_subpixel(imp, channel, shifts, target_folder, virtual):
""" Takes the imp, determines the x,y,z drift for each pair of time points, using the preferred given channel,
and outputs as a hyperstack.
The shifted image is computed using TransformJ allowing for sub-pixel shifts using interpolation.
This is quite a bit slower than just shifting the image by full pixels as done in above function register_hyperstack().
However it significantly improves the result by removing pixel jitter.
"""
# Compute bounds of the new volume,
# which accounts for all translations:
minx, miny, minz, maxx, maxy, maxz = compute_min_max(shifts)
# Make shifts relative to new canvas dimensions
# so that the min values become 0,0,0
for shift in shifts:
shift.x -= minx
shift.y -= miny
shift.z -= minz
# new canvas dimensions:
width = int(imp.width + maxx - minx)
height = int(maxy - miny + imp.height)
slices = int(maxz - minz + imp.getNSlices())
print "New dimensions:", width, height, slices
# prepare stack for final results
stack = imp.getStack()
if virtual is True:
names = []
else:
registeredstack = ImageStack(width, height, imp.getProcessor().getColorModel())
# prepare empty slice for padding
empty = imp.getProcessor().createProcessor(width, height)
IJ.showProgress(0)
for frame in range(1, imp.getNFrames()+1):
IJ.showProgress(frame / float(imp.getNFrames()+1))
fr = "t" + zero_pad(frame, len(str(imp.getNFrames()))) # for saving files in a virtual stack
# init
shift = shifts[frame-1]
tmpstack = ImageStack(width, height, imp.getProcessor().getColorModel())
print "frame",frame,"correcting drift",-shift.x-minx,-shift.y-miny,-shift.z-minz
IJ.log(" frame "+str(frame)+" correcting drift "+str(round(-shift.x-minx,2))+","+str(round(-shift.y-miny,2))+","+str(round(-shift.z-minz,2)))
# for doing the same with imglib2 i would have to put the channel loop
# to the outside and translate each individual channel as long as i don't figure out
# to two wrap a composite imglib2 image into an imp
# Add all slices of this frame
stack = imp.getStack()
for s in range(1, imp.getNSlices()+1):
for ch in range(1, imp.getNChannels()+1):
ip = stack.getProcessor(imp.getStackIndex(ch, s, frame))
ip2 = ip.createProcessor(width, height) # potentially larger
ip2.insert(ip, 0, 0)
tmpstack.addSlice("", ip2)
# Pad the end (in z) of this frame
for s in range(imp.getNSlices(), slices):
for ch in range(1, imp.getNChannels()+1):
tmpstack.addSlice("", empty)
# Set correct dimensions of this frame
# ..it is important *not* to set the calibration as translation should be in pixels units
imp_tmpstack = ImagePlus("registered time points", tmpstack)
imp_tmpstack.setProperty("Info", imp.getProperty("Info"))
imp_tmpstack.setDimensions(imp.getNChannels(), slices, 1)
imp_tmpstack.setOpenAsHyperStack(True)
# subpixel translation
imp_translated = translate_using_imagescience(imp_tmpstack, shift.x, shift.y, shift.z)
#imp_translated = translate_using_imglib2(imp_tmpstack, shift.x, shift.y, shift.z)
imp_translated.setProperty("Info", imp.getProperty("Info"))
imp_translated.setDimensions(imp.getNChannels(), slices, 1)
imp_translated.setOpenAsHyperStack(True)
# Add translated frame to final time-series
stack = imp_translated.getStack()
for s in range(1, imp_translated.getNSlices()+1):
ss = "_z" + zero_pad(s, len(str(slices)))
for ch in range(1, imp_translated.getNChannels()+1):
ip = stack.getProcessor(imp_translated.getStackIndex(ch, s, 1))
if virtual is True:
name = fr + ss + "_c" + zero_pad(ch, len(str(imp.getNChannels()))) +".tif"
names.append(name)
currentslice = ImagePlus("", ip)
currentslice.setCalibration(imp.getCalibration().copy())
currentslice.setProperty("Info", imp.getProperty("Info"));
FileSaver(currentslice).saveAsTiff(target_folder + "/" + name)
else:
registeredstack.addSlice("", ip)
IJ.showProgress(1)
if virtual is True:
# Create virtual hyper stack with the result
registeredstack = VirtualStack(width, height, None, target_folder)
for name in names:
registeredstack.addSlice(name)
registeredstack_imp = ImagePlus("registered time points", registeredstack)
registeredstack_imp.setDimensions(imp.getNChannels(), slices, imp.getNFrames())
registeredstack_imp.setCalibration(imp.getCalibration().copy())
registeredstack_imp.setOpenAsHyperStack(True)
else:
registeredstack_imp = ImagePlus("registered time points", registeredstack)
registeredstack_imp.setCalibration(imp.getCalibration().copy())
registeredstack_imp.setProperty("Info", imp.getProperty("Info"))
registeredstack_imp.setDimensions(imp.getNChannels(), slices, imp.getNFrames())
registeredstack_imp.setOpenAsHyperStack(True)
if 1 == registeredstack_imp.getNChannels():
return registeredstack_imp
#IJ.log("\nHyperstack dimensions: time frames:" + str(registeredstack_imp.getNFrames()) + ", slices: " + str(registeredstack_imp.getNSlices()) + ", channels: " + str(registeredstack_imp.getNChannels()))
# Else, as composite
mode = CompositeImage.COLOR;
if isinstance(imp, CompositeImage):
mode = imp.getMode()
else:
return registeredstack_imp
return CompositeImage(registeredstack_imp, mode)
class Filter(FilenameFilter):
def accept(self, folder, name):
return not File(folder.getAbsolutePath() + "/" + name).isHidden()
def validate(target_folder):
f = File(target_folder)
if len(File(target_folder).list(Filter())) > 0:
yn = YesNoCancelDialog(IJ.getInstance(), "Warning!", "Target folder is not empty! May overwrite files! Continue?")
if yn.yesPressed():
return True
else:
return False
return True
def getOptions(imp):
gd = GenericDialog("Correct 3D Drift Options")
channels = []
for ch in range(1, imp.getNChannels()+1 ):
channels.append(str(ch))
gd.addChoice("Channel for registration:", channels, channels[0])
gd.addCheckbox("Multi_time_scale computation for enhanced detection of slow drifts?", False)
gd.addCheckbox("Sub_pixel drift correction (possibly needed for slow drifts)?", False)
gd.addCheckbox("Edge_enhance images for possibly improved drift detection?", False)
gd.addCheckbox("Use virtualstack for saving the results to disk to save RAM?", False)
gd.addMessage("If you put a ROI, drift will only be computed in this region;\n the ROI will be moved along with the drift to follow your structure of interest.")
gd.showDialog()
if gd.wasCanceled():
return
channel = gd.getNextChoiceIndex() + 1 # zero-based
multi_time_scale = gd.getNextBoolean()
subpixel = gd.getNextBoolean()
process = gd.getNextBoolean()
virtual = gd.getNextBoolean()
dt = gd.getNextNumber()
return channel, virtual, multi_time_scale, subpixel, process
# Need function to get colors for each channel. Loop channels extracting color model and then apply to registered
def run():
IJ.log("Correct_3D_Drift")
imp = IJ.getImage()
if imp is None:
return
#if not imp.isHyperStack():
# print "Not a hyper stack!"
# return
if 1 == imp.getNFrames():
print "There is only one time frame!"
return
#if 1 == imp.getNSlices():
# print "To register slices of a stack, use 'Register Virtual Stack Slices'"
# return
options = getOptions(imp)
if options is not None:
channel, virtual, multi_time_scale, subpixel, process = options
print "channel="+str(channel)
print "multi_time_scale="+str(multi_time_scale)
print "virtual="+str(virtual)
print "process="+str(process)
if virtual is True:
dc = DirectoryChooser("Choose target folder to save image sequence")
target_folder = dc.getDirectory()
if target_folder is None:
return # user canceled the dialog
if not validate(target_folder):
return
else:
target_folder = None
# compute shifts
IJ.log(" computing drifts..."); print("\nCOMPUTING SHIFTS:")
IJ.log(" at frame shifts of 1");
dt = 1; shifts = compute_and_update_frame_translations_dt(imp, channel, dt, process)
# multi-time-scale computation
if multi_time_scale is True:
dt_max = imp.getNFrames()-1
# computing drifts on exponentially increasing time scales 3^i up to 3^6
# ..one could also do this with 2^i or 4^i
# ..maybe make this a user choice? did not do this to keep it simple.
dts = [3,9,27,81,243,729,dt_max]
for dt in dts:
if dt < dt_max:
IJ.log(" at frame shifts of "+str(dt))
shifts = compute_and_update_frame_translations_dt(imp, channel, dt, process, shifts)
else:
IJ.log(" at frame shifts of "+str(dt_max));
shifts = compute_and_update_frame_translations_dt(imp, channel, dt_max, process, shifts)
break
# invert measured shifts to make them the correction
shifts = invert_shifts(shifts)
# apply shifts
IJ.log(" applying shifts..."); print("\nAPPLYING SHIFTS:")
if subpixel:
registered_imp = register_hyperstack_subpixel(imp, channel, shifts, target_folder, virtual)
else:
shifts = convert_shifts_to_integer(shifts)
registered_imp = register_hyperstack(imp, channel, shifts, target_folder, virtual)
if virtual is True:
if 1 == imp.getNChannels():
ip=imp.getProcessor()
ip2=registered_imp.getProcessor()
ip2.setColorModel(ip.getCurrentColorModel())
registered_imp.show()
else:
registered_imp.copyLuts(imp)
registered_imp.show()
else:
if 1 ==imp.getNChannels():
registered_imp.show()
else:
registered_imp.copyLuts(imp)
registered_imp.show()
registered_imp.show()
run()