-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
96 lines (75 loc) · 2.88 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from transformers import (
SamProcessor,
SamModel,
)
import torch
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams["savefig.bbox"] = "tight"
from PIL import Image
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_masks_on_image(raw_image, masks, scores):
if len(masks.shape) == 4:
masks = masks.squeeze()
if scores.shape[0] == 1:
scores = scores.squeeze()
nb_predictions = scores.shape[-1]
fig, axes = plt.subplots(1, nb_predictions, figsize=(15, 15))
for i, (mask, score) in enumerate(zip(masks, scores)):
mask = mask.cpu().detach()
axes[i].imshow(np.array(raw_image), "jet", interpolation="none", alpha=0.8)
axes[0].show_mask(mask, axes[i])
axes[i].title.set_text(f"Mask {i+1}, Score: {score.item():.3f}")
axes[i].axis("off")
plt.show()
def store_image_with_mask(image, masks, scores, path):
if len(masks.shape) == 4:
masks = masks.squeeze()
if scores.shape[0] == 1:
scores = scores.squeeze()
plt.plot()
mask = masks[0]
plt.figure()
plt.imshow(image)
mask = mask.cpu().detach()
plt.imshow(mask, alpha=0.6, cmap="jet")
plt.axis("off")
plt.savefig(f"{path}.png", bbox_inches="tight", transparent="True", pad_inches=0)
from datasets import load_dataset
dataset = load_dataset("nielsr/breast-cancer", "default", split="train")
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = SamProcessor.from_pretrained("wanglab/medsam-vit-base")
output = None
def use_dataset():
for i in range(50):
image = dataset[i]["image"]
inputs = processor(image, return_tensors="pt").to(device)
model = SamModel.from_pretrained("ayoubkirouane/Breast-Cancer_SAM_v1").to(
device
)
with torch.no_grad():
output = model(**inputs)
masks = processor.image_processor.post_process_masks(
output.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu(),
)
store_image_with_mask(image, masks[0], output.iou_scores, f"masked/mask{i}")
def perform_inference(image):
inputs = processor(image, return_tensors="pt").to(device)
model = SamModel.from_pretrained("ayoubkirouane/Breast-Cancer_SAM_v1").to(device)
with torch.no_grad():
output = model(**inputs)
masks = processor.image_processor.post_process_masks(
output.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu(),
)
store_image_with_mask(image, masks[0], output.iou_scores, f"masked/masked")