-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
287 lines (227 loc) · 12.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import time
import csv
import numpy as np
from path import Path
import argparse
import matplotlib.pyplot as plt
from tensorboardX import SummaryWriter
import torch
import torch.nn.functional as F
from core.dataset import custom_transforms
from core.networks.MVDNet_conf import MVDNet_conf
from core.networks.MVDNet_joint import MVDNet_joint
from core.utils.utils import load_config_file, save_checkpoint, adjust_learning_rate
from core.networks.loss_functions import compute_errors_test, compute_angles, cross_entropy
from core.utils.logger import AverageMeter
from core.dataset.data_loader import SequenceFolder
def main(cfg):
global n_iter
save_path = Path(cfg.output_dir)
if not os.path.exists(save_path):
os.makedirs(save_path)
print('=> will save everything to {}'.format(save_path))
training_writer = SummaryWriter(save_path)
output_writers = []
for i in range(3):
output_writers.append(SummaryWriter(save_path/'valid'/str(i)))
# Loading data
normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
train_transform = custom_transforms.Compose([
custom_transforms.RandomScaleCrop(),
custom_transforms.ArrayToTensor(),
normalize
])
valid_transform = custom_transforms.Compose([custom_transforms.ArrayToTensor(), normalize])
print("=> fetching scenes in '{}'".format(cfg.dataset_path))
if cfg.dataset == 'scannet':
train_set = SequenceFolder(cfg.dataset_path, transform=train_transform, ttype=cfg.train_list)
test_set = SequenceFolder(cfg.dataset_path, transform=valid_transform, ttype=cfg.test_list)
else:
raise NotImplementedError
train_set.samples = train_set.samples[:len(train_set) - len(train_set)%cfg.batch_size]
print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes)))
print('{} samples found in {} test scenes'.format(len(test_set), len(test_set.scenes)))
train_loader = torch.utils.data.DataLoader(train_set, batch_size=cfg.batch_size, shuffle=True,
num_workers=cfg.num_workers, pin_memory=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=1, shuffle=False,
num_workers=cfg.num_workers, pin_memory=True)
epoch_size = len(train_loader)
# create model
print("=> creating model")
if cfg.model_name == 'MVDNet_conf':
mvdnet = MVDNet_conf(cfg).cuda()
elif cfg.model_name == 'MVDNet_joint':
mvdnet = MVDNet_joint(cfg).cuda()
else:
raise NotImplementedError
mvdnet.init_weights()
if cfg.pretrained_mvdn:
print("=> using pre-trained weights for MVDNet")
weights = torch.load(cfg.pretrained_mvdn)
mvdnet.load_state_dict(weights['state_dict'], strict=True)
print('=> setting adam solver')
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, mvdnet.parameters()), cfg.learning_rate, betas=(cfg.momentum, cfg.beta),
weight_decay=cfg.weight_decay)
torch.backends.cudnn.benchmark = True
mvdnet = torch.nn.DataParallel(mvdnet)
print(' ==> setting log files')
with open(save_path/'log_summary.txt', 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'validation_abs_rel', 'validation_abs_diff','validation_sq_rel', 'validation_a1', 'validation_a2', 'validation_a3', 'mean_angle_error'])
print(' ==> main Loop')
for epoch in range(cfg.epochs):
adjust_learning_rate(cfg, optimizer, epoch)
# train for one epoch
train_loss = train_epoch(cfg, train_loader, mvdnet, optimizer, epoch_size, training_writer, epoch)
errors, error_names = validate_with_gt(cfg, test_loader, mvdnet, epoch, output_writers)
for error, name in zip(errors, error_names):
training_writer.add_scalar(name, error, epoch)
# Up to you to chose the most relevant error to measure your model's performance, careful some measures are to maximize (such as a1,a2,a3)
decisive_error = errors[0]
with open(save_path/'log_summary.txt', 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([train_loss, decisive_error, errors[1], errors[2], errors[3], errors[4], errors[5], errors[6]])
save_checkpoint(os.path.join(save_path, 'checkpoints'), {'epoch': epoch + 1, 'state_dict': mvdnet.module.state_dict()},
epoch, file_prefixes = ['mvdnet'])
def train_epoch(cfg, train_loader, mvdnet, optimizer, epoch_size, train_writer, epoch):
global n_iter
batch_time = AverageMeter()
data_time = AverageMeter()
total_losses = AverageMeter(precision=4)
d_losses = AverageMeter(precision=4)
nmap_losses = AverageMeter(precision=4)
dconf_losses = AverageMeter(precision=4)
nconf_losses = AverageMeter(precision=4)
mvdnet.train()
print("Training")
end = time.time()
for i, (tgt_img, ref_imgs, gt_nmap, ref_poses, intrinsics, intrinsics_inv, tgt_depth, ref_depths) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
tgt_img_var = tgt_img.cuda()
ref_imgs_var = [img.cuda() for img in ref_imgs]
gt_nmap_var = gt_nmap.cuda()
ref_poses_var = [pose.cuda() for pose in ref_poses]
intrinsics_var = intrinsics.cuda()
intrinsics_inv_var = intrinsics_inv.cuda()
tgt_depth_var = tgt_depth.cuda()
# compute output
pose = torch.cat(ref_poses_var,1)
# get mask
mask = (tgt_depth_var <= 10.0) & (tgt_depth_var >= 0.5) & (tgt_depth_var == tgt_depth_var)
mask.detach_()
if mask.any() == 0:
continue
if cfg.model_name == 'MVDNet_conf':
outputs = mvdnet(tgt_img_var, ref_imgs_var, pose, intrinsics_var, intrinsics_inv_var)
elif cfg.model_name == 'MVDNet_joint':
outputs = mvdnet(tgt_img_var, ref_imgs_var, pose, tgt_depth_var, gt_nmap_var, intrinsics_var, intrinsics_inv_var)
else:
raise NotImplementedError
depth0, depth1 = outputs[0], outputs[1]
nmap0 = outputs[2]
dconf, nconf = outputs[-2], outputs[-1]
# Loss
d_loss = cfg.d_weight * F.smooth_l1_loss(depth0[mask], tgt_depth_var[mask]) + \
F.smooth_l1_loss(depth1[mask], tgt_depth_var[mask])
gt_dconf = 1.0 - cfg.conf_dgamma * torch.abs(depth0 - tgt_depth_var) / (tgt_depth_var + 1e-6)
gt_dconf = torch.clamp(gt_dconf, 0.01, 1.0).detach_()
dconf_loss = cross_entropy(dconf[mask], gt_dconf[mask])
n_mask = mask.unsqueeze(1).expand(-1,3,-1,-1)
nmap_loss = F.smooth_l1_loss(nmap0[n_mask], gt_nmap_var[n_mask])
gt_nconf = 1.0 - cfg.conf_ngamma * compute_angles(nmap0, gt_nmap_var, dim=1) / 180.0
gt_nconf = torch.clamp(gt_nconf, 0.01, 1.0).detach_()
nconf_loss = cross_entropy(nconf[mask], gt_nconf[mask])
loss = d_loss + cfg.n_weight * nmap_loss + cfg.dc_weight * dconf_loss + cfg.nc_weight * nconf_loss
if i > 0 and n_iter % cfg.print_freq == 0:
train_writer.add_scalar('total_loss', loss.item(), n_iter)
# record loss and EPE
total_losses.update(loss.item(), n=cfg.batch_size)
d_losses.update(d_loss.mean().item(), n=cfg.batch_size)
nmap_losses.update(nmap_loss.mean().item(), n=cfg.batch_size)
dconf_losses.update(dconf_loss.mean().item(), n=cfg.batch_size)
nconf_losses.update(nconf_loss.mean().item(), n=cfg.batch_size)
# compute gradient and do Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if cfg.log_mode == 'full':
with open(cfg.output_dir/'log_full.txt', 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([loss.item()])
if i % cfg.print_freq == 0:
print('Train: Time {} Loss {} NLoss {} DLoss {} DCLoss {} NCLoss {} Iter {}/{} Epoch {}/{}'.format(batch_time, total_losses, nmap_losses,
d_losses, dconf_losses, nconf_losses, i, len(train_loader), epoch, cfg.epochs))
if i >= epoch_size - 1:
break
n_iter += 1
return total_losses.avg[0]
def validate_with_gt(cfg, test_loader, mvdnet, epoch, output_writers=[]):
batch_time = AverageMeter()
test_error_names = ['abs_rel','abs_diff','sq_rel','rms','log_rms','a1','a2','a3', 'dconf', 'nconf', 'mean_angle']
test_errors = AverageMeter(i=len(test_error_names))
log_outputs = len(output_writers) > 0
mvdnet.eval()
end = time.time()
with torch.no_grad():
for i, (tgt_img, ref_imgs, gt_nmap, ref_poses, intrinsics, intrinsics_inv, tgt_depth, ref_depths) in enumerate(test_loader):
tgt_img_var = tgt_img.cuda()
ref_imgs_var = [img.cuda() for img in ref_imgs]
gt_nmap_var = gt_nmap.cuda()
ref_poses_var = [pose.cuda() for pose in ref_poses]
intrinsics_var = intrinsics.cuda()
intrinsics_inv_var = intrinsics_inv.cuda()
tgt_depth_var = tgt_depth.cuda()
pose = torch.cat(ref_poses_var,1)
if (pose != pose).any():
continue
if cfg.model_name == 'MVDNet_conf':
outputs = mvdnet(tgt_img_var, ref_imgs_var, pose, intrinsics_var, intrinsics_inv_var)
elif cfg.model_name == 'MVDNet_joint':
outputs = mvdnet(tgt_img_var, ref_imgs_var, pose, tgt_depth_var, gt_nmap_var, intrinsics_var, intrinsics_inv_var)
else:
raise NotImplementedError
output_depth = outputs[0].data.cpu()
nmap = outputs[1].permute(0,2,3,1)
dconf, nconf = outputs[-2], outputs[-1]
mask = (tgt_depth <= 10) & (tgt_depth >= 0.5) & (tgt_depth == tgt_depth)
if not mask.any():
continue
test_errors_ = list(compute_errors_test(tgt_depth[mask], output_depth[mask]))
gt_dconf = 1.0 - cfg.conf_dgamma * torch.abs(tgt_depth - output_depth) / (tgt_depth + 1e-6)
dconf_e = torch.abs(dconf.cpu()[mask] - gt_dconf[mask]).mean()
test_errors_.append(dconf_e.item())
n_mask = (gt_nmap_var.permute(0,2,3,1)[0,:,:] != 0)
n_mask = n_mask[:,:,0] | n_mask[:,:,1] | n_mask[:,:,2]
total_angles_m = compute_angles(gt_nmap_var.permute(0,2,3,1)[0], nmap[0])
gt_nconf = 1.0 - cfg.conf_ngamma * total_angles_m / 180.0
nconf_e = torch.abs(nconf[0][n_mask] - gt_nconf[n_mask]).mean()
test_errors_.append(nconf_e.item())
mask_angles = total_angles_m[n_mask]
total_angles_m[~ n_mask] = 0
test_errors_.append(torch.mean(mask_angles).item())
test_errors.update(test_errors_)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % cfg.print_freq == 0 or i == len(test_loader)-1:
print('valid: Time {} Rel Error {:.4f} ({:.4f}) DConf Error {:.4f} ({:.4f}) Iter {}/{}'.format(batch_time, test_errors.val[0], test_errors.avg[0], test_errors.val[-3], test_errors.avg[-3], i, len(test_loader)))
if cfg.save_samples:
output_dir = Path(os.path.join(cfg.output_dir, 'vis'))
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
plt.imsave(output_dir/'{:04d}_depth.png'.format(i), output_depth.numpy()[0], cmap='rainbow')
return test_errors.avg, test_error_names
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Iterative solver for multi-view depth and normal',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('config_file', metavar='DIR', help='path to config file')
args = parser.parse_args()
cfg = load_config_file(args.config_file)
n_iter = 0
main(cfg)