forked from ericyi/GSPN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
222 lines (206 loc) · 12.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import sys
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(ROOT_DIR) # model
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
sys.path.append(os.path.join(ROOT_DIR, 'external/ScanNet/BenchmarkScripts'))
import tensorflow as tf
import numpy as np
import argparse
import importlib
import dataset
import config
import io_util
import util_3d
from sklearn.neighbors import NearestNeighbors
import random
random.seed(0)
CONFIG = config.Config(istrain = False)
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--num_point', type=int, default=CONFIG.NUM_POINT, help='Point Number in a Scene [default: 18000]')
parser.add_argument('--num_point_ins', type=int, default=CONFIG.NUM_POINT_INS, help='Point Number of an Instance [default: 512]')
parser.add_argument('--num_category', type=int, default=CONFIG.NUM_CATEGORY, help='Maximum Number of Categories [default: 19]')
parser.add_argument('--num_sample', type=int, default=CONFIG.NUM_SAMPLE, help='Number of Sampled Seed Points [default: 2048]')
parser.add_argument('--model', default='model_rpointnet', help='Model name [default: model]')
parser.add_argument('--model_path', default='log/model.ckpt', help='model checkpoint file path [default: log/model.ckpt]')
FLAGS = parser.parse_args()
CONFIG.NUM_POINT = FLAGS.num_point
CONFIG.NUM_POINT_INS = FLAGS.num_point_ins
CONFIG.NUM_CATEGORY = FLAGS.num_category
CONFIG.NUM_SAMPLE = FLAGS.num_sample
MODEL_PATH = FLAGS.model_path
GPU_INDEX = FLAGS.gpu
MODEL = importlib.import_module(FLAGS.model) # import network module
SRC_MESH_PATH = os.path.join(ROOT_DIR, 'data/scannet_preprocessed/mesh/scans')
SRC_LABEL_PATH = os.path.join(ROOT_DIR, 'data/scannet_preprocessed/label/scans')
VAL_LIST = os.path.join(ROOT_DIR, 'data/scannet/scannet_val.txt')
VAL_CACHE = os.path.join(ROOT_DIR, 'data/cache/val_%d_%d.npz'%(CONFIG.NUM_POINT, CONFIG.NUM_POINT_INS))
VAL_DATASET = dataset.ScanNetDataset(SRC_MESH_PATH, SRC_LABEL_PATH, VAL_LIST, VAL_CACHE, npoint=CONFIG.NUM_POINT, npoint_ins=CONFIG.NUM_POINT_INS, is_augment=False, permute_points=False)
CONFIG.NUM_GROUP = VAL_DATASET.ngroup
def get_model(batch_size):
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
CONFIG.BATCH_SIZE = batch_size
pc_pl, color_pl, pc_ins_pl, group_label_pl, group_indicator_pl, seg_label_pl, bbox_ins_pl = MODEL.placeholder_inputs(CONFIG)
is_training_pl = tf.placeholder(tf.bool, shape=())
smpw_pl = tf.placeholder(tf.float32, shape=(CONFIG.BATCH_SIZE, CONFIG.NUM_POINT))
end_points = MODEL.rpointnet(pc_pl, color_pl, pc_ins_pl, group_label_pl, group_indicator_pl, seg_label_pl, bbox_ins_pl, CONFIG, is_training_pl, mode='inference', bn_decay=None)
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
# Restore variables from disk.
saver.restore(sess, MODEL_PATH)
ops = {'pc_pl': pc_pl,
'color_pl': color_pl,
'pc_ins_pl': pc_ins_pl,
'group_label_pl': group_label_pl,
'group_indicator_pl': group_indicator_pl,
'seg_label_pl': seg_label_pl,
'bbox_ins_pl': bbox_ins_pl,
'smpw_pl': smpw_pl,
'is_training_pl': is_training_pl,
'end_points': end_points}
return sess, ops
def get_batch(dataset, idxs, start_idx, end_idx):
bsize = end_idx-start_idx
batch_pc = np.zeros((bsize, CONFIG.NUM_POINT, 3))
batch_color = np.zeros((bsize, CONFIG.NUM_POINT, 3))
batch_pc_ins = np.zeros((bsize, CONFIG.NUM_GROUP, CONFIG.NUM_POINT_INS, 3))
batch_group_label = np.zeros((bsize, CONFIG.NUM_POINT), dtype=np.int32)
batch_group_indicator = np.zeros((bsize, CONFIG.NUM_GROUP), dtype=np.int32)
batch_seg_label = np.zeros((bsize, CONFIG.NUM_POINT), dtype=np.int32)
batch_bbox_ins = np.zeros((bsize, CONFIG.NUM_GROUP, 6), dtype=np.float32)
batch_smpw = np.ones((bsize, CONFIG.NUM_POINT), dtype=np.float32)
for i in range(bsize):
pc, color, pc_ins, group_label, group_indicator, seg_label, bbox_ins = dataset[idxs[i+start_idx]]
batch_pc[i,...] = pc
batch_color[i,...] = color
batch_pc_ins[i,...] = pc_ins
batch_group_label[i,...] = group_label
batch_group_indicator[i,...] = group_indicator
batch_seg_label[i,...] = seg_label
batch_bbox_ins[i,...] = bbox_ins
return batch_pc, batch_color, batch_pc_ins, batch_group_label, batch_group_indicator, batch_seg_label, batch_bbox_ins, batch_smpw
def export_instance_ids_for_eval_customized(filename, label_ids, instance_ids, confidence):
# label_ids: [NUM_INSTANCE]
# instance_ids: [NUM_INSTANCE, NUM_POINT]
# confidence: [NUM_INSTANCE]
assert label_ids.shape[0] == instance_ids.shape[0]
output_mask_path_relative = 'pred_mask'
name = os.path.splitext(os.path.basename(filename))[0]
output_mask_path = os.path.join(os.path.dirname(filename), output_mask_path_relative)
if not os.path.isdir(output_mask_path):
os.mkdir(output_mask_path)
with open(filename, 'w') as f:
for idx in np.arange(instance_ids.shape[0]):
if np.sum(instance_ids[idx])==0: # 0 -> no instance for this vertex
continue
output_mask_file_relative = os.path.join(output_mask_path_relative, name + '_' + str(idx) + '.txt')
f.write('%s %d %f\n' % (output_mask_file_relative, label_ids[idx], confidence[idx]))
# write mask
output_mask_file = os.path.join(output_mask_path, name + '_' + str(idx) + '.txt')
util_3d.export_ids(output_mask_file, instance_ids[idx])
def gen_gt(dataset, scan_list_path, output_path):
if not os.path.exists(output_path):
os.makedirs(output_path)
test_idxs = np.arange(0, len(dataset))
scan_list = io_util.read_txt(scan_list_path)
seg_label_map = np.array([0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
for i, scan in enumerate(scan_list):
print(i/float(len(scan_list)))
batch_pc, batch_color, batch_pc_ins, batch_group_label, batch_group_indicator, batch_seg_label, batch_bbox_ins, batch_smpw = get_batch(dataset, test_idxs, i, i+1)
batch_pc = np.squeeze(batch_pc, 0)
batch_group_label = np.squeeze(batch_group_label, 0)
batch_seg_label = np.squeeze(batch_seg_label, 0)
batch_seg_label = seg_label_map[batch_seg_label]
util_3d.export_ids(os.path.join(output_path, scan+'.txt'),batch_seg_label*1000+batch_group_label)
def output_prediction(sess, ops, dataset, scan_list_path, output_path):
if not os.path.exists(output_path):
os.makedirs(output_path)
test_idxs = np.arange(0, len(dataset))
scan_list = io_util.read_txt(scan_list_path)
seg_label_map = np.array([0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
sem_conf_th = 0.01
fb_conf_th = 0.01
mask_th = 0.4
for i, scan in enumerate(scan_list):
print(i/float(len(scan_list)))
batch_pc, batch_color, batch_pc_ins, batch_group_label, batch_group_indicator, batch_seg_label, batch_bbox_ins, batch_smpw = get_batch(dataset, test_idxs, i, i+1)
feed_dict = {ops['pc_pl']: batch_pc,
ops['color_pl']: batch_color,
ops['pc_ins_pl']: batch_pc_ins,
ops['group_label_pl']: batch_group_label,
ops['group_indicator_pl']: batch_group_indicator,
ops['seg_label_pl']: batch_seg_label,
ops['bbox_ins_pl']: batch_bbox_ins,
ops['smpw_pl']: batch_smpw,
ops['is_training_pl']: False}
rpointnet_mask_selected, pc_coord_cropped_final_unnormalized, detections, sem_class_logits, pc_seed, fb_prob = sess.run([ops['end_points']['rpointnet_mask_selected'],
ops['end_points']['pc_coord_cropped_final_unnormalized'], ops['end_points']['detections'],
ops['end_points']['sem_class_logits'], ops['end_points']['pc_seed'], ops['end_points']['fb_prob']], feed_dict=feed_dict)
batch_pc = np.squeeze(batch_pc, 0) # [NUM_POINT, 3]
rpointnet_mask_selected = np.squeeze(rpointnet_mask_selected, 0) # [DETECTION_MAX_INSTANCES, NUM_POINT_PER_ROI]
pc_coord_cropped_final_unnormalized = np.squeeze(pc_coord_cropped_final_unnormalized, 0) # [DETECTION_MAX_INSTANCES, NUM_POINT_PER_ROI, 3]
detections = np.squeeze(detections, 0) # [DETECTION_MAX_INSTANCES, 6+2]
rpointnet_mask_selected = rpointnet_mask_selected[detections[:,6]>0,:]
pc_coord_cropped_final_unnormalized = pc_coord_cropped_final_unnormalized[detections[:,6]>0,:,:]
detections = detections[detections[:,6]>0,:]
group_label_pred = np.zeros((detections.shape[0], batch_pc.shape[0]))
for j in range(detections.shape[0]):
nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(pc_coord_cropped_final_unnormalized[j,:,:])
_, sidx = nbrs.kneighbors(batch_pc)
sidx = np.reshape(sidx, -1)
group_label_pred[j,:] = rpointnet_mask_selected[j,sidx]
roi_mask = np.logical_and(batch_pc>=np.reshape(detections[j,:3]-detections[j,3:6]/2, [1,3]),
batch_pc<=np.reshape(detections[j,:3]+detections[j,3:6]/2, [1,3]))
roi_mask = np.logical_and(np.logical_and(roi_mask[:,0], roi_mask[:,1]), roi_mask[:,2])
roi_mask = roi_mask.astype(np.float32)
group_label_pred[j,:] = np.multiply(group_label_pred[j,:], roi_mask)
#### get sem conf
sem_class_logits = np.squeeze(sem_class_logits) # [N, NC]
sem_class_prob = np.exp(sem_class_logits)
sem_class_prob = np.divide(sem_class_prob, np.sum(sem_class_prob, -1, keepdims=True)) # [N, NC]
sem_conf = np.matmul(group_label_pred, sem_class_prob) # [ND, NC]
sem_conf = np.divide(sem_conf, 1e-8+np.sum(group_label_pred, 1, keepdims=True)) # [ND, NC]
sem_conf = sem_conf.reshape(-1)[detections[:,6].astype(np.int32)+np.arange(detections.shape[0])*sem_conf.shape[1]] # [ND]
#### get fb conf
pc_seed = np.squeeze(pc_seed) # [NS, 3]
fb_prob = np.squeeze(fb_prob) # [NS, 2]
nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(pc_seed)
_, sidx = nbrs.kneighbors(batch_pc)
sidx = np.reshape(sidx, -1)
fb_prob = fb_prob[sidx,1] # [N]
fb_conf = np.matmul(group_label_pred, fb_prob) # [ND]
fb_conf = np.divide(fb_conf, 1e-8+np.sum(group_label_pred, 1)) # [ND]
#### Sort
sidx = np.where(np.logical_and(sem_conf>sem_conf_th, fb_conf>fb_conf_th))[0]
sidx2 = np.where(np.logical_or(sem_conf<=sem_conf_th, fb_conf<=fb_conf_th))[0]
sidx_idx = np.argsort(detections[sidx,7]*sem_conf[sidx]*fb_conf[sidx])[::-1]
sidx = sidx[sidx_idx]
sidx2_idx = np.argsort(detections[sidx2,7]*sem_conf[sidx2]*fb_conf[sidx2])[::-1]
sidx2 = sidx2[sidx2_idx]
group_label_pred = np.concatenate((group_label_pred[sidx,:],group_label_pred[sidx2,:]),0)
detections = np.concatenate((detections[sidx,:],detections[sidx2,:]),0)
sem_conf = np.concatenate((sem_conf[sidx],sem_conf[sidx2]),0)
fb_conf = np.concatenate((fb_conf[sidx],fb_conf[sidx2]),0)
confidence_pred = np.concatenate((np.ones(len(sidx)), 0.97*np.ones(len(sidx2))),0)
group_label_pred = (group_label_pred>mask_th).astype(np.int32)
seg_label_pred = seg_label_map[(detections[:,6]).astype(np.int32)] #[NUM_INSTANCE]
export_instance_ids_for_eval_customized(os.path.join(output_path, scan+'.txt'), seg_label_pred, group_label_pred, confidence_pred)
if __name__=='__main__':
OUT_PATH = os.path.join(ROOT_DIR, 'eva')
if not os.path.exists(OUT_PATH):
os.makedirs(OUT_PATH)
BATCH_SIZE = 1
##### Generate ground truth
gen_gt(VAL_DATASET, VAL_LIST, os.path.join(OUT_PATH, 'gt'))
##### Generate prediction
sess, ops = get_model(batch_size=1)
output_prediction(sess, ops, VAL_DATASET, VAL_LIST, os.path.join(OUT_PATH, 'pred'))
##### Evaluate command
# python evaluate_semantic_instance.py --pred_path root_dir/eva/pred --gt_path root_dir/eva/gt --output_file root_dir/eva/pred/semantic_instance_evaluation.txt