From 22dbf74a81c8d2c8ccc9f650b3188ef419041957 Mon Sep 17 00:00:00 2001 From: Thushan Ganegedara Date: Sun, 31 Mar 2019 18:45:49 +0800 Subject: [PATCH] Added bidirectional code --- model/nmt_bidirectional.py | 92 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 92 insertions(+) create mode 100644 model/nmt_bidirectional.py diff --git a/model/nmt_bidirectional.py b/model/nmt_bidirectional.py new file mode 100644 index 0000000..eecfb55 --- /dev/null +++ b/model/nmt_bidirectional.py @@ -0,0 +1,92 @@ +from tensorflow.python.keras.layers import Input, GRU, Dense, Concatenate, TimeDistributed, Bidirectional, Embedding +from tensorflow.python.keras.models import Model +from layers.attention import AttentionLayer + + +def define_nmt(hidden_size, batch_size, en_timesteps, en_vsize, fr_timesteps, fr_vsize): + """ Defining a NMT model """ + + # Define an input sequence and process it. + encoder_inputs = Input(batch_shape=(batch_size, en_timesteps, en_vsize), name='encoder_inputs') + decoder_inputs = Input(batch_shape=(batch_size, fr_timesteps - 1, fr_vsize), name='decoder_inputs') + + # Encoder GRU + encoder_gru = Bidirectional(GRU(hidden_size, return_sequences=True, return_state=True, name='encoder_gru'), name='bidirectional_encoder') + encoder_out, encoder_fwd_state, encoder_back_state = encoder_gru(encoder_inputs) + + # Set up the decoder GRU, using `encoder_states` as initial state. + decoder_gru = Bidirectional(GRU(hidden_size, return_sequences=True, return_state=True, name='decoder_gru'), name='bidirectional_decoder') + decoder_out, decoder_fwd_state, decoder_back_state = decoder_gru(decoder_inputs, initial_state=[encoder_fwd_state, encoder_back_state]) + + # Attention layer + attn_layer = AttentionLayer(name='attention_layer') + attn_out, attn_states = attn_layer([encoder_out, decoder_out]) + + # Concat attention input and decoder GRU output + decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_out, attn_out]) + + # Dense layer + dense = Dense(fr_vsize, activation='softmax', name='softmax_layer') + dense_time = TimeDistributed(dense, name='time_distributed_layer') + decoder_pred = dense_time(decoder_concat_input) + + # Full model + full_model = Model(inputs=[encoder_inputs, decoder_inputs], outputs=decoder_pred) + full_model.compile(optimizer='adam', loss='categorical_crossentropy') + + full_model.summary() + + """ Inference model """ + batch_size = 1 + + """ Encoder (Inference) model """ + encoder_inf_inputs = Input(batch_shape=(batch_size, en_timesteps, en_vsize), name='encoder_inf_inputs') + encoder_inf_out, encoder_inf_fwd_state, encoder_inf_back_state = encoder_gru(encoder_inf_inputs) + encoder_model = Model(inputs=encoder_inf_inputs, outputs=[encoder_inf_out, encoder_inf_fwd_state, encoder_inf_back_state]) + + """ Decoder (Inference) model """ + decoder_inf_inputs = Input(batch_shape=(batch_size, 1, fr_vsize), name='decoder_word_inputs') + encoder_inf_states = Input(batch_shape=(batch_size, en_timesteps, 2*hidden_size), name='encoder_inf_states') + decoder_init_fwd_state = Input(batch_shape=(batch_size, hidden_size), name='decoder_fwd_init') + decoder_init_back_state = Input(batch_shape=(batch_size, hidden_size), name='decoder_back_init') + + decoder_inf_out, decoder_inf_fwd_state, decoder_inf_back_state = decoder_gru(decoder_inf_inputs, initial_state=[decoder_init_fwd_state, decoder_init_back_state]) + attn_inf_out, attn_inf_states = attn_layer([encoder_inf_states, decoder_inf_out]) + decoder_inf_concat = Concatenate(axis=-1, name='concat')([decoder_inf_out, attn_inf_out]) + decoder_inf_pred = TimeDistributed(dense)(decoder_inf_concat) + decoder_model = Model(inputs=[encoder_inf_states, decoder_init_fwd_state, decoder_init_back_state, decoder_inf_inputs], + outputs=[decoder_inf_pred, attn_inf_states, decoder_inf_fwd_state, decoder_inf_back_state]) + + return full_model, encoder_model, decoder_model + + +def define_nmt2(maxlen): + + input_1 = Input(shape=(maxlen,), name="input1") + x = Embedding(25000, 128, input_length=maxlen, name='embedding_1', trainable=False)(input_1) + encoder_out, forward_h, backward_h = Bidirectional(GRU(32, return_sequences=True, return_state=True))(x) + decoder_out, forward_h, backward_h = Bidirectional(GRU(32, return_sequences=True, return_state=True))(x, + initial_state=[ + forward_h, + backward_h]) + print('encoder_out > ', encoder_out.shape) + print('decoder_out > ', decoder_out.shape) + + attn_out, attn_states = AttentionLayer()([encoder_out, decoder_out]) + a = Concatenate([decoder_out, attn_out], axis=1) + + dense = Dense(25000, activation='softmax', name='softmax_layer') + dense_time = TimeDistributed(dense, name='time_distributed_layer') + decoder_pred = dense_time(a) + + # Full model + full_model = Model(inputs=x, outputs=decoder_pred) + full_model.compile(optimizer='adam', loss='categorical_crossentropy') + + full_model.summary() + +if __name__ == '__main__': + + """ Checking nmt model for toy example """ + #define_nmt(64, 32, 20, 30, 20, 20) + define_nmt2(100) \ No newline at end of file