forked from ycjuan/libffm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ffm.cpp
699 lines (551 loc) · 19.3 KB
/
ffm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
/*
The following table is the meaning of some variables in this code:
W: The pointer to the beginning of the model
w: Dynamic pointer to access values in the model
m: Number of fields
k: Number of latent factors
n: Number of features
l: Number of data points
f: Field index (0 to m-1)
d: Latent factor index (0 to k-1)
j: Feature index (0 to n-1)
i: Data point index (0 to l-1)
nnz: Number of non-zero elements
X, P: Used to store the problem in a compressed sparse row (CSR) format. len(X) = nnz, len(P) = l + 1
Y: The label. len(Y) = l
R: Precomputed scaling factor to make the 2-norm of each instance to be 1. len(R) = l
v: Value of each element in the problem
*/
#pragma GCC diagnostic ignored "-Wunused-result"
#include <algorithm>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <new>
#include <memory>
#include <random>
#include <stdexcept>
#include <string>
#include <cstring>
#include <vector>
#include <cassert>
#include <numeric>
#if defined USESSE
#include <pmmintrin.h>
#endif
#if defined USEOMP
#include <omp.h>
#endif
#include "ffm.h"
#include "timer.h"
namespace ffm {
namespace {
using namespace std;
#if defined USESSE
ffm_int const kALIGNByte = 16;
#else
ffm_int const kALIGNByte = 4;
#endif
ffm_int const kALIGN = kALIGNByte/sizeof(ffm_float);
ffm_int const kCHUNK_SIZE = 10000000;
ffm_int const kMaxLineSize = 100000;
inline ffm_int get_k_aligned(ffm_int k) {
return (ffm_int) ceil((ffm_float)k / kALIGN) * kALIGN;
}
ffm_long get_w_size(ffm_model &model) {
ffm_int k_aligned = get_k_aligned(model.k);
return (ffm_long) model.n * model.m * k_aligned * 2;
}
#if defined USESSE
inline ffm_float wTx(
ffm_node *begin,
ffm_node *end,
ffm_float r,
ffm_model &model,
ffm_float kappa=0,
ffm_float eta=0,
ffm_float lambda=0,
bool do_update=false) {
ffm_int align0 = 2 * get_k_aligned(model.k);
ffm_int align1 = model.m * align0;
__m128 XMMkappa = _mm_set1_ps(kappa);
__m128 XMMeta = _mm_set1_ps(eta);
__m128 XMMlambda = _mm_set1_ps(lambda);
__m128 XMMt = _mm_setzero_ps();
for(ffm_node *N1 = begin; N1 != end; N1++)
{
ffm_int j1 = N1->j;
ffm_int f1 = N1->f;
ffm_float v1 = N1->v;
if(j1 >= model.n || f1 >= model.m)
continue;
for(ffm_node *N2 = N1+1; N2 != end; N2++)
{
ffm_int j2 = N2->j;
ffm_int f2 = N2->f;
ffm_float v2 = N2->v;
if(j2 >= model.n || f2 >= model.m)
continue;
ffm_float *w1_base = model.W + (ffm_long)j1*align1 + f2*align0;
ffm_float *w2_base = model.W + (ffm_long)j2*align1 + f1*align0;
__m128 XMMv = _mm_set1_ps(v1*v2*r);
if(do_update)
{
__m128 XMMkappav = _mm_mul_ps(XMMkappa, XMMv);
for(ffm_int d = 0; d < align0; d += kALIGN * 2)
{
ffm_float *w1 = w1_base + d;
ffm_float *w2 = w2_base + d;
ffm_float *wg1 = w1 + kALIGN;
ffm_float *wg2 = w2 + kALIGN;
__m128 XMMw1 = _mm_load_ps(w1);
__m128 XMMw2 = _mm_load_ps(w2);
__m128 XMMwg1 = _mm_load_ps(wg1);
__m128 XMMwg2 = _mm_load_ps(wg2);
__m128 XMMg1 = _mm_add_ps(
_mm_mul_ps(XMMlambda, XMMw1),
_mm_mul_ps(XMMkappav, XMMw2));
__m128 XMMg2 = _mm_add_ps(
_mm_mul_ps(XMMlambda, XMMw2),
_mm_mul_ps(XMMkappav, XMMw1));
XMMwg1 = _mm_add_ps(XMMwg1, _mm_mul_ps(XMMg1, XMMg1));
XMMwg2 = _mm_add_ps(XMMwg2, _mm_mul_ps(XMMg2, XMMg2));
XMMw1 = _mm_sub_ps(XMMw1, _mm_mul_ps(XMMeta,
_mm_mul_ps(_mm_rsqrt_ps(XMMwg1), XMMg1)));
XMMw2 = _mm_sub_ps(XMMw2, _mm_mul_ps(XMMeta,
_mm_mul_ps(_mm_rsqrt_ps(XMMwg2), XMMg2)));
_mm_store_ps(w1, XMMw1);
_mm_store_ps(w2, XMMw2);
_mm_store_ps(wg1, XMMwg1);
_mm_store_ps(wg2, XMMwg2);
}
}
else
{
for(ffm_int d = 0; d < align0; d += kALIGN * 2)
{
__m128 XMMw1 = _mm_load_ps(w1_base+d);
__m128 XMMw2 = _mm_load_ps(w2_base+d);
XMMt = _mm_add_ps(XMMt,
_mm_mul_ps(_mm_mul_ps(XMMw1, XMMw2), XMMv));
}
}
}
}
if(do_update)
return 0;
XMMt = _mm_hadd_ps(XMMt, XMMt);
XMMt = _mm_hadd_ps(XMMt, XMMt);
ffm_float t;
_mm_store_ss(&t, XMMt);
return t;
}
#else
inline ffm_float wTx(
ffm_node *begin,
ffm_node *end,
ffm_float r,
ffm_model &model,
ffm_float kappa=0,
ffm_float eta=0,
ffm_float lambda=0,
bool do_update=false) {
ffm_int align0 = 2 * get_k_aligned(model.k);
ffm_int align1 = model.m * align0;
ffm_float t = 0;
for(ffm_node *N1 = begin; N1 != end; N1++) {
ffm_int j1 = N1->j;
ffm_int f1 = N1->f;
ffm_float v1 = N1->v;
if(j1 >= model.n || f1 >= model.m)
continue;
for(ffm_node *N2 = N1+1; N2 != end; N2++) {
ffm_int j2 = N2->j;
ffm_int f2 = N2->f;
ffm_float v2 = N2->v;
if(j2 >= model.n || f2 >= model.m)
continue;
ffm_float *w1 = model.W + (ffm_long)j1*align1 + f2*align0;
ffm_float *w2 = model.W + (ffm_long)j2*align1 + f1*align0;
ffm_float v = v1 * v2 * r;
if(do_update) {
ffm_float *wg1 = w1 + kALIGN;
ffm_float *wg2 = w2 + kALIGN;
for(ffm_int d = 0; d < align0; d += kALIGN * 2)
{
ffm_float g1 = lambda * w1[d] + kappa * w2[d] * v;
ffm_float g2 = lambda * w2[d] + kappa * w1[d] * v;
wg1[d] += g1 * g1;
wg2[d] += g2 * g2;
w1[d] -= eta / sqrt(wg1[d]) * g1;
w2[d] -= eta / sqrt(wg2[d]) * g2;
}
} else {
for(ffm_int d = 0; d < align0; d += kALIGN * 2)
t += w1[d] * w2[d] * v;
}
}
}
return t;
}
#endif
ffm_float* malloc_aligned_float(ffm_long size)
{
void *ptr;
#ifndef USESSE
ptr = malloc(size * sizeof(ffm_float));
#else
#ifdef _WIN32
ptr = _aligned_malloc(size*sizeof(ffm_float), kALIGNByte);
if(ptr == nullptr)
throw bad_alloc();
#else
int status = posix_memalign(&ptr, kALIGNByte, size*sizeof(ffm_float));
if(status != 0)
throw bad_alloc();
#endif
#endif
return (ffm_float*)ptr;
}
ffm_model init_model(ffm_int n, ffm_int m, ffm_parameter param)
{
ffm_model model;
model.n = n;
model.k = param.k;
model.m = m;
model.W = nullptr;
model.normalization = param.normalization;
ffm_int k_aligned = get_k_aligned(model.k);
model.W = malloc_aligned_float((ffm_long)n*m*k_aligned*2);
ffm_float coef = 1.0f / sqrt(model.k);
ffm_float *w = model.W;
default_random_engine generator;
uniform_real_distribution<ffm_float> distribution(0.0, 1.0);
for(ffm_int j = 0; j < model.n; j++) {
for(ffm_int f = 0; f < model.m; f++) {
for(ffm_int d = 0; d < k_aligned;) {
for(ffm_int s = 0; s < kALIGN; s++, w++, d++) {
w[0] = (d < model.k)? coef * distribution(generator) : 0.0;
w[kALIGN] = 1;
}
w += kALIGN;
}
}
}
return model;
}
struct disk_problem_meta {
ffm_int n = 0;
ffm_int m = 0;
ffm_int l = 0;
ffm_int num_blocks = 0;
ffm_long B_pos = 0;
uint64_t hash1;
uint64_t hash2;
};
struct problem_on_disk {
disk_problem_meta meta;
vector<ffm_float> Y;
vector<ffm_float> R;
vector<ffm_long> P;
vector<ffm_node> X;
vector<ffm_long> B;
problem_on_disk(string path) {
f.open(path, ios::in | ios::binary);
if(f.good()) {
f.read(reinterpret_cast<char*>(&meta), sizeof(disk_problem_meta));
f.seekg(meta.B_pos);
B.resize(meta.num_blocks);
f.read(reinterpret_cast<char*>(B.data()), sizeof(ffm_long) * meta.num_blocks);
}
}
int load_block(int block_index) {
if(block_index >= meta.num_blocks)
assert(false);
f.seekg(B[block_index]);
ffm_int l;
f.read(reinterpret_cast<char*>(&l), sizeof(ffm_int));
Y.resize(l);
f.read(reinterpret_cast<char*>(Y.data()), sizeof(ffm_float) * l);
R.resize(l);
f.read(reinterpret_cast<char*>(R.data()), sizeof(ffm_float) * l);
P.resize(l+1);
f.read(reinterpret_cast<char*>(P.data()), sizeof(ffm_long) * (l+1));
X.resize(P[l]);
f.read(reinterpret_cast<char*>(X.data()), sizeof(ffm_node) * P[l]);
return l;
}
bool is_empty() {
return meta.l == 0;
}
private:
ifstream f;
};
uint64_t hashfile(string txt_path, bool one_block=false)
{
ifstream f(txt_path, ios::ate | ios::binary);
if(f.bad())
return 0;
ffm_long end = (ffm_long) f.tellg();
f.seekg(0, ios::beg);
assert(static_cast<int>(f.tellg()) == 0);
uint64_t magic = 90359;
for(ffm_long pos = 0; pos < end; ) {
ffm_long next_pos = min(pos + kCHUNK_SIZE, end);
ffm_long size = next_pos - pos;
vector<char> buffer(kCHUNK_SIZE);
f.read(buffer.data(), size);
ffm_int i = 0;
while(i < size - 8) {
uint64_t x = *reinterpret_cast<uint64_t*>(buffer.data() + i);
magic = ( (magic + x) * (magic + x + 1) >> 1) + x;
i += 8;
}
for(; i < size; i++) {
char x = buffer[i];
magic = ( (magic + x) * (magic + x + 1) >> 1) + x;
}
pos = next_pos;
if(one_block)
break;
}
return magic;
}
void txt2bin(string txt_path, string bin_path) {
FILE *f_txt = fopen(txt_path.c_str(), "r");
if(f_txt == nullptr)
throw;
ofstream f_bin(bin_path, ios::out | ios::binary);
vector<char> line(kMaxLineSize);
ffm_long p = 0;
disk_problem_meta meta;
vector<ffm_float> Y;
vector<ffm_float> R;
vector<ffm_long> P(1, 0);
vector<ffm_node> X;
vector<ffm_long> B;
auto write_chunk = [&] () {
B.push_back(f_bin.tellp());
ffm_int l = Y.size();
ffm_long nnz = P[l];
meta.l += l;
f_bin.write(reinterpret_cast<char*>(&l), sizeof(ffm_int));
f_bin.write(reinterpret_cast<char*>(Y.data()), sizeof(ffm_float) * l);
f_bin.write(reinterpret_cast<char*>(R.data()), sizeof(ffm_float) * l);
f_bin.write(reinterpret_cast<char*>(P.data()), sizeof(ffm_long) * (l+1));
f_bin.write(reinterpret_cast<char*>(X.data()), sizeof(ffm_node) * nnz);
Y.clear();
R.clear();
P.assign(1, 0);
X.clear();
p = 0;
meta.num_blocks++;
};
f_bin.write(reinterpret_cast<char*>(&meta), sizeof(disk_problem_meta));
while(fgets(line.data(), kMaxLineSize, f_txt)) {
char *y_char = strtok(line.data(), " \t");
ffm_float y = (atoi(y_char)>0)? 1.0f : -1.0f;
ffm_float scale = 0;
for(; ; p++) {
char *field_char = strtok(nullptr,":");
char *idx_char = strtok(nullptr,":");
char *value_char = strtok(nullptr," \t");
if(field_char == nullptr || *field_char == '\n')
break;
ffm_node N;
N.f = atoi(field_char);
N.j = atoi(idx_char);
N.v = atof(value_char);
X.push_back(N);
meta.m = max(meta.m, N.f+1);
meta.n = max(meta.n, N.j+1);
scale += N.v*N.v;
}
scale = 1.0 / scale;
Y.push_back(y);
R.push_back(scale);
P.push_back(p);
if(X.size() > (size_t)kCHUNK_SIZE)
write_chunk();
}
write_chunk();
write_chunk(); // write a dummy empty chunk in order to know where the EOF is
assert(meta.num_blocks == (ffm_int)B.size());
meta.B_pos = f_bin.tellp();
f_bin.write(reinterpret_cast<char*>(B.data()), sizeof(ffm_long) * B.size());
fclose(f_txt);
meta.hash1 = hashfile(txt_path, true);
meta.hash2 = hashfile(txt_path, false);
f_bin.seekp(0, ios::beg);
f_bin.write(reinterpret_cast<char*>(&meta), sizeof(disk_problem_meta));
}
bool check_same_txt_bin(string txt_path, string bin_path) {
ifstream f_bin(bin_path, ios::binary | ios::ate);
if(f_bin.tellg() < (ffm_long)sizeof(disk_problem_meta))
return false;
disk_problem_meta meta;
f_bin.seekg(0, ios::beg);
f_bin.read(reinterpret_cast<char*>(&meta), sizeof(disk_problem_meta));
if(meta.hash1 != hashfile(txt_path, true))
return false;
if(meta.hash2 != hashfile(txt_path, false))
return false;
return true;
}
} // unnamed namespace
ffm_model::~ffm_model() {
if(W != nullptr) {
#ifndef USESSE
free(W);
#else
#ifdef _WIN32
_aligned_free(W);
#else
free(W);
#endif
#endif
W = nullptr;
}
}
void ffm_read_problem_to_disk(string txt_path, string bin_path) {
Timer timer;
cout << "First check if the text file has already been converted to binary format " << flush;
bool same_file = check_same_txt_bin(txt_path, bin_path);
cout << "(" << fixed << setprecision(1) << timer.toc() << " seconds)" << endl;
if(same_file) {
cout << "Binary file found. Skip converting text to binary" << endl;
} else {
cout << "Binary file NOT found. Convert text file to binary file " << flush;
txt2bin(txt_path, bin_path);
cout << "(" << fixed << setprecision(1) << timer.toc() << " seconds)" << endl;
}
}
ffm_model ffm_train_on_disk(string tr_path, string va_path, ffm_parameter param) {
problem_on_disk tr(tr_path);
problem_on_disk va(va_path);
ffm_model model = init_model(tr.meta.n, tr.meta.m, param);
bool auto_stop = param.auto_stop && !va_path.empty();
ffm_long w_size = get_w_size(model);
vector<ffm_float> prev_W(w_size, 0);
if(auto_stop)
prev_W.assign(w_size, 0);
ffm_double best_va_loss = numeric_limits<ffm_double>::max();
cout.width(4);
cout << "iter";
cout.width(13);
cout << "tr_logloss";
if(!va_path.empty())
{
cout.width(13);
cout << "va_logloss";
}
cout.width(13);
cout << "tr_time";
cout << endl;
Timer timer;
auto one_epoch = [&] (problem_on_disk &prob, bool do_update) {
ffm_double loss = 0;
vector<ffm_int> outer_order(prob.meta.num_blocks);
iota(outer_order.begin(), outer_order.end(), 0);
random_shuffle(outer_order.begin(), outer_order.end());
for(auto blk : outer_order) {
ffm_int l = prob.load_block(blk);
vector<ffm_int> inner_order(l);
iota(inner_order.begin(), inner_order.end(), 0);
random_shuffle(inner_order.begin(), inner_order.end());
#if defined USEOMP
#pragma omp parallel for schedule(static) reduction(+: loss)
#endif
for(ffm_int ii = 0; ii < l; ii++) {
ffm_int i = inner_order[ii];
ffm_float y = prob.Y[i];
ffm_node *begin = &prob.X[prob.P[i]];
ffm_node *end = &prob.X[prob.P[i+1]];
ffm_float r = param.normalization? prob.R[i] : 1;
ffm_double t = wTx(begin, end, r, model);
ffm_double expnyt = exp(-y*t);
loss += log1p(expnyt);
if(do_update) {
ffm_float kappa = -y*expnyt/(1+expnyt);
wTx(begin, end, r, model, kappa, param.eta, param.lambda, true);
}
}
}
return loss / prob.meta.l;
};
for(ffm_int iter = 1; iter <= param.nr_iters; iter++) {
timer.tic();
ffm_double tr_loss = one_epoch(tr, true);
timer.toc();
cout.width(4);
cout << iter;
cout.width(13);
cout << fixed << setprecision(5) << tr_loss;
if(!va.is_empty()) {
ffm_double va_loss = one_epoch(va, false);
cout.width(13);
cout << fixed << setprecision(5) << va_loss;
if(auto_stop) {
if(va_loss > best_va_loss) {
memcpy(model.W, prev_W.data(), w_size*sizeof(ffm_float));
cout << endl << "Auto-stop. Use model at " << iter-1 << "th iteration." << endl;
break;
} else {
memcpy(prev_W.data(), model.W, w_size*sizeof(ffm_float));
best_va_loss = va_loss;
}
}
}
cout.width(13);
cout << fixed << setprecision(1) << timer.get() << endl;
}
return model;
}
void ffm_save_model(ffm_model &model, string path) {
ofstream f_out(path, ios::out | ios::binary);
f_out.write(reinterpret_cast<char*>(&model.n), sizeof(ffm_int));
f_out.write(reinterpret_cast<char*>(&model.m), sizeof(ffm_int));
f_out.write(reinterpret_cast<char*>(&model.k), sizeof(ffm_int));
f_out.write(reinterpret_cast<char*>(&model.normalization), sizeof(bool));
ffm_long w_size = get_w_size(model);
// f_out.write(reinterpret_cast<char*>(model.W), sizeof(ffm_float) * w_size);
// Need to write chunk by chunk because some compiler use int32 and will overflow when w_size * 4 > MAX_INT
for(ffm_long offset = 0; offset < w_size; ) {
ffm_long next_offset = min(w_size, offset + (ffm_long) sizeof(ffm_float) * kCHUNK_SIZE);
ffm_long size = next_offset - offset;
f_out.write(reinterpret_cast<char*>(model.W+offset), sizeof(ffm_float) * size);
offset = next_offset;
}
}
ffm_model ffm_load_model(string path) {
ifstream f_in(path, ios::in | ios::binary);
ffm_model model;
f_in.read(reinterpret_cast<char*>(&model.n), sizeof(ffm_int));
f_in.read(reinterpret_cast<char*>(&model.m), sizeof(ffm_int));
f_in.read(reinterpret_cast<char*>(&model.k), sizeof(ffm_int));
f_in.read(reinterpret_cast<char*>(&model.normalization), sizeof(bool));
ffm_long w_size = get_w_size(model);
model.W = malloc_aligned_float(w_size);
// f_in.read(reinterpret_cast<char*>(model.W), sizeof(ffm_float) * w_size);
// Need to write chunk by chunk because some compiler use int32 and will overflow when w_size * 4 > MAX_INT
for(ffm_long offset = 0; offset < w_size; ) {
ffm_long next_offset = min(w_size, offset + (ffm_long) sizeof(ffm_float) * kCHUNK_SIZE);
ffm_long size = next_offset - offset;
f_in.read(reinterpret_cast<char*>(model.W+offset), sizeof(ffm_float) * size);
offset = next_offset;
}
return model;
}
ffm_float ffm_predict(ffm_node *begin, ffm_node *end, ffm_model &model) {
ffm_float r = 1;
if(model.normalization) {
r = 0;
for(ffm_node *N = begin; N != end; N++)
r += N->v*N->v;
r = 1/r;
}
ffm_float t = wTx(begin, end, r, model);
return 1/(1+exp(-t));
}
} // namespace ffm