-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenetic_algorithm.py
571 lines (507 loc) · 20.5 KB
/
genetic_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
#get_ipython().magic('load_ext autoreload')
#get_ipython().magic('autoreload')
import pandas as pd
import os
import numpy as np
import random
import copy
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from sklearn.neighbors import BallTree
import itertools as it
from collections import defaultdict
import time
import multiprocessing
from concurrent.futures import ProcessPoolExecutor
from itertools import combinations
from opt import Optimizer
import copy
import math
import sys
import matplotlib.animation
import matplotlib as mpl
from IPython.display import HTML
mpl.rcParams['animation.embed_limit'] = 500
np.random.seed(42)
num_cpus = multiprocessing.cpu_count()
#get_ipython().magic('matplotlib inline')
np.set_printoptions(threshold=1000, linewidth=75)
pd.options.mode.chained_assignment = None
pd.set_option('display.max_columns', 15)
p = int(sys.argv[1])
time_limit = 60 * int(sys.argv[2])
class Point():
def __init__(self, x, y):
self.x = x
self.y = y
def dist_to(self, point):
return math.sqrt((self.x - point.x)**2 + (self.y - point.y)**2)
class Customer(Point):
def __init__(self, i, x, y, d, q):
super(Customer, self).__init__(x, y)
self.id = i
self.duration = d
self.demand = q
self.swappable_to = []
class Depot(Point):
def __init__(self, i, x, y, max_dur, max_load, max_veh):
super(Depot, self).__init__(x, y)
self.id = i
self.max_duration = max_dur if max_dur != 0 else 1e9
self.max_load = max_load
self.max_vehicle_num = max_veh
def read_problem(problem="01"):
with open("Testing Data/Data Files/p"+problem, "r") as d:
data = d.readlines()
def clean_line(row):
row = list(map(int, row.strip().split()))
return row
m, n, t = clean_line(data[0])
depot_limits = list(map(clean_line, data[1:t+1]))
cust_rows = list(map(clean_line, data[t+1:t+n+1]))
depot_pos = list(map(clean_line, data[t+n+1:]))
depot_rows = list(zip(depot_limits, depot_pos))
num_rows = m*t
num_customers = n
depots = [Depot(i,d[1][1], d[1][2], d[0][0], d[0][1], m) for i, d in enumerate(depot_rows)]
customers = [Customer(c[0],c[1], c[2], c[3], c[4]) for c in cust_rows]
return depots, customers
class Individual(object):
def __init__(self, chromosome):
self.genes = chromosome
self.subroutes = [[] for i in range(len(chromosome))]
for i in range(len(chromosome)):
try:
self.subroutes[i] = self.split_cluster(chromosome[i], depots[i])
except:
print(len(chromosome))
print(chromosome)
print(i)
self.cost = 0
self.loads = {}
for depind, depot in enumerate(self.subroutes):
self.loads[depind] = {}
for subr_ind, subroute in enumerate(depot):
self.cost += self.calc_subr_dist(subroute)
self.loads[depind][subr_ind] = self.calc_subr_load(subroute)
def get_copy(self):
genes_copy = []
for gene in self.genes:
genes_copy.append(gene[:])
return Individual(genes_copy)
def recalc_subroute(self, cluster, depind):
for subr_ind, subroute in enumerate(self.subroutes[depind]):
self.cost -= self.calc_subr_dist(subroute)
self.subroutes[depind] = self.split_cluster(cluster, depots[depind])
for subr_ind, subroute in enumerate(self.subroutes[depind]):
self.cost += self.calc_subr_dist(subroute)
self.loads[depind][subr_ind] = self.calc_subr_load(subroute)
def split_cluster(self, cluster, d):
routes = []
length = 0
load = 0
subroute = [d]
for c in cluster:
total_duration = length + c.dist_to(subroute[-1]) + c.duration + d.dist_to(c)
if load + c.demand <= d.max_load and d.max_duration > total_duration :
subroute.append(c)
length += c.dist_to(subroute[-1]) + c.duration
load += c.demand
else:
subroute.append(d)
routes.append(subroute)
length = 0
load = 0
subroute = [d]
total_duration = length + c.dist_to(subroute[-1]) + c.duration + d.dist_to(c)
subroute.append(c)
length += c.dist_to(subroute[-1]) + c.duration
load += c.demand
subroute.append(d)
routes.append(subroute)
return routes
def calc_subr_dist(self, subroute):
distance = 0
for i in range(1, len(subroute)):
distance += subroute[i].dist_to(subroute[i-1])
return distance
def route_dist(self, subroutes):
dist = 0
for subr in subroutes:
dist += self.calc_subr_dist(subr)
return dist
def eval_subr(self, subroute, d):
cost = self.calc_subr_dist(subroute)
load = self.calc_subr_load(subroute)
f = load <= d.max_load
fill_perc = (100*load)/d.max_load
return cost, load, f, fill_perc
def eval_ind(self):
evaldf = pd.DataFrame([(depind, rind, self.eval_subr(r, depots[depind])) for depind, route in enumerate(self.subroutes) for rind, r in enumerate(route)], columns=["depind", "routeind", "eval"])
evaldf[["duration", "load", "feasible", "fill_perc"]] = evaldf.loc[:,"eval"].apply(pd.Series)
del evaldf["eval"]
return evaldf
def calc_subr_load(self, subroute):
load = 0
for customer in subroute[1:-1]:
load += customer.demand
return load
def opt_som(self, route, d):
'''
Optimize a single (sub)route through a Self Organizing Map. Route must contain depot.
'''
old_dur, old_load, old_f, f_p = self.eval_subr(route, d)
poslist = list(map(lambda point: (point.x,point.y), route))
r_arr = np.array(poslist[:-1])
o = Optimizer(r_arr)
s, _ = o.run()
if len(s)!=len(route)-1:
print("som failed..")
print(r_arr)
print(s)
return route
dep_ind = np.argmin(s)
s = s[dep_ind:]+s[:dep_ind]
new = [route[i] for i in s]+[d]
dur, load, f, new_f_p = self.eval_subr(new, d)
if (dur < old_dur) and (load <= d.max_load) and f:
print("saved by SOM: " +str(old_dur-dur))
return new
else:
return route
def optimize_routes(self):
print("Cost before SOM:")
print(self.cost)
for depind, depr in enumerate(self.subroutes):
d = depots[depind]
for subind, subr in enumerate(depr):
self.cost -= self.calc_subr_dist(subr)
new_subr = self.opt_som(subr, d)
self.subroutes[depind][subind] = new_subr
self.cost += self.calc_subr_dist(new_subr)
self.loads[depind][subind] = self.calc_subr_load(new_subr)
print("Cost after SOM:")
print(self.cost)
def write_solution(self):
with open("p"+p_no+"_solution", "w") as f:
f.write("{0:.2f}".format(self.cost)+"\n")
for depind, dep in enumerate(self.subroutes):
for subr_ind, subr in enumerate(dep):
f.write(str(depind+1)+" ")
f.write(str(subr_ind+1)+" ")
f.write("{0:.2f}".format(self.calc_subr_dist(subr))+" ")
f.write(str(self.calc_subr_load(subr))+" 0 ")
for c in subr[1:-1]:
f.write(str(c.id)+" ")
f.write("0 \n")
def plot(self):
customer_x = [c.x for c in customers]
customer_y = [c.y for c in customers]
depot_x = [d.x for d in depots]
depot_y = [d.y for d in depots]
fig, ax = plt.subplots()
ax.scatter(customer_x, customer_y, marker='d')
for depot in self.subroutes:
for subroute in depot:
xs = [point.x for point in subroute]
ys = [point.y for point in subroute]
ax.plot(xs, ys, c=list(np.random.rand(3,1).flatten()))
ax.scatter(depot_x, depot_y, marker='o', s=200, c = 'r')
plt.title("Problem: "+ str(p_no) + " Cost: "+str(self.cost))
plt.show()
def save_plot(self, gen):
customer_x = [c.x for c in customers]
customer_y = [c.y for c in customers]
depot_x = [d.x for d in depots]
depot_y = [d.y for d in depots]
fig, ax = plt.subplots()
ax.scatter(customer_x, customer_y, marker='d')
for depot in self.subroutes:
for subroute in depot:
xs = [point.x for point in subroute]
ys = [point.y for point in subroute]
ax.plot(xs, ys, c=list(np.random.rand(3,1).flatten()))
ax.scatter(depot_x, depot_y, marker='o', s=200, c = 'r')
plt.title("Generation: "+ str(gen) + " Cost: "+str(round(self.cost, 2)))
def to_str(gen):
if gen<10:
return "00"+str(gen)
if gen<100:
return "0"+str(gen)
return str(gen)
plt.savefig("plots/"+str(p_no)+to_str(gen))
plt.close(fig)
def cluster_to_depot():
'''
params:
customers: list of the customers in the dataset.
depots: list of the depots in the dataset.
returns: a Chromosome where customers are assigned to their closest depot, but randomized order within each depot.
'''
closest_dep = []
for c in customers:
dists = sorted([(d, c.dist_to(d)) for d in depots], key=lambda x: x[1])
min_dist = dists[0][1]
next_dist = dists[1][1]
two = min_dist+next_dist
#print(dists)
c.swappable_to = [dep for dep, dist in dists if dist<(2*min_dist)]
if not allow_second:
closest_dep.append((c, dists[0][0]))
else:
if np.random.rand() > ((two-min_dist)/(3*two)):
closest_dep.append((c, dists[0][0]))
else:
closest_dep.append((c, dists[1][0]))
dna = []
for d in depots:
cust_for_dep = [c for c, dep in closest_dep if dep==d]
np.random.shuffle(cust_for_dep)
dna.append(cust_for_dep)
return Individual(dna)
def get_pop(popsize):
return [cluster_to_depot() for i in range(popsize)]
def select_parents(population, random_winner_prob):
parents = random.sample(population, 2)
if random.random() > random_winner_prob:
return min(parents, key=lambda x: x.cost)
else:
return parents[0]
def bcrxo(genes, depot, subroute):
# Remove all customers belonging to subroute from
# genes.
for d in genes:
for c in subroute:
if c in d:
d.remove(c)
# Get the phenotype for the stripped chromosome.
stripped_repr = Individual(genes)
# For all customers in the subroute...
for c in subroute:
stripped_cost = stripped_repr.cost
# Keep a list of insertion at each position.
insertion_costs = []
for i in range(len(genes[depot])+1):
genes[depot].insert(i, c)
stripped_repr.recalc_subroute(genes[depot], depot)
insertion_costs.append(stripped_repr.cost - stripped_cost)
del genes[depot][i]
# insert at best position.
genes[depot].insert(insertion_costs.index(min(insertion_costs)), c)
stripped_repr.recalc_subroute(genes[depot], depot)
return genes
def rev_mut(gene):
spl_ind = random.sample(range(len(gene)), 2)
spl_ind.sort()
gene[spl_ind[0]:spl_ind[1]] = gene[spl_ind[0]:spl_ind[1]][::-1]
return gene
def swap_mut(gene):
points = random.sample(range(len(gene)), 2)
gene[points[0]], gene[points[1]] = gene[points[1]], gene[points[0]]
return gene
def mutate_genes(genes):
geneind = random.choice(range(len(genes)))
gene = genes[geneind]
if random.random() < 0.5:
genes[geneind] = rev_mut(gene)
else:
genes[geneind] = swap_mut(gene)
return genes
def mate(p1, p2, mutate, bcrxo_prob):
c1_genes = p1.get_copy().genes
c2_genes = p2.get_copy().genes
if random.random() < bcrxo_prob:
depot = random.randrange(0, len(depots))
p1_subroute = random.choice(p1.subroutes[depot])[1:-1]
p2_subroute = random.choice(p2.subroutes[depot])[1:-1]
c2_genes = bcrxo(c2_genes, depot, p1_subroute)
c1_genes = bcrxo(c1_genes, depot, p2_subroute)
if mutate:
mutate_genes(c1_genes)
mutate_genes(c2_genes)
return Individual(c1_genes), Individual(c2_genes)
def mate2(args):
p1, p2, mutate = args
c1_genes = p1.get_copy().genes
c2_genes = p2.get_copy().genes
if random.random() <= bcrxo_prob:
depot = random.randrange(0, len(depots))
p1_subroute = random.choice(p1.subroutes[depot])[1:-1]
p2_subroute = random.choice(p2.subroutes[depot])[1:-1]
c2_genes = bcrxo(c2_genes, depot, p1_subroute)
c1_genes = bcrxo(c1_genes, depot, p2_subroute)
if mutate:
c1_genes = mutate_genes(c1_genes[:])
c2_genes = mutate_genes(c2_genes[:])
return [Individual(c1_genes), Individual(c2_genes)]
def evaluate_pop(pop, sel_scheme, popsize, div_imp=0.5, fp_imp=0.5):
'''
Calculate all desired metrics in order to perform selection.
'''
subrdf = pd.concat([p.eval_ind() for p in pop],keys=range(len(pop)), names=["individual", "subroute"])
rankdf = subrdf.loc[:,["duration", "feasible", "fill_perc"]].groupby("individual").agg({"duration": sum,
"feasible": all,
"fill_perc": "mean"})
rankdf.columns = ["cost", "feasible", "avg_fp"]
rankdf["index"] = rankdf.index
rankdf["cost_frac"] = rankdf.cost/rankdf.cost.sum()
rankdf["cost_prob"] = (1/rankdf.cost_frac)/(1/rankdf.cost_frac).sum()
rankdf["avg_fp_rank"] = rankdf.avg_fp.rank()
rankdf["avg_fp_rank_frac"] = rankdf.avg_fp_rank/rankdf.avg_fp_rank.sum()
rankdf["avg_fp_rank_prob"] = (1/rankdf.avg_fp_rank_frac)/(1/rankdf.avg_fp_rank_frac).sum()
rankdf["cost_rank"] = rankdf.cost.rank()
rankdf["cost_rank_frac"] = rankdf.cost_rank/rankdf.cost_rank.sum()
rankdf["cost_rank_prob"] = (1/rankdf.cost_rank_frac)/(1/rankdf.cost_rank_frac).sum()
rankdf["cost_log_rank"] = np.log(rankdf.cost_rank.rank(ascending=False))
rankdf["cost_log_frac"] = rankdf.cost_log_rank/rankdf.cost_log_rank.sum()
rankdf["cost_log_prob"] = (1/rankdf.cost_log_frac)/(1/rankdf.cost_log_frac).sum()
individs = [flatten_pos(p) for p in pop]
individs = pd.DataFrame(individs).values
tree = BallTree(list(individs), metric="hamming")
get_diversity = lambda x: sum(tree.query(np.array(flatten_pos(x)).reshape(1,-1), k=4)[0][0])
rankdf["diversity"] = list(map(get_diversity, pop))
rankdf["div_rank"] = rankdf.diversity.rank(ascending=False)
rankdf["agg_rank"] = rankdf.cost_rank+(rankdf.div_rank*div_imp)+(rankdf.avg_fp_rank*fp_imp)
rankdf["final_rank"] = rankdf.agg_rank.rank()
rankdf["final_rank_frac"] = rankdf.final_rank/rankdf.final_rank.sum()
rankdf["final_rank_prob"] = (1/rankdf.final_rank_frac)/(1/rankdf.final_rank_frac).sum()
rankdf["final_log_rank"] = np.log(rankdf.final_rank.rank(ascending=False).values)
rankdf["final_log_prob"] = rankdf.final_log_rank/rankdf.final_log_rank.sum()
rankdf.sort_values(sel_scheme, inplace=True)
return rankdf.head(popsize)
def flatten_pos(ind):
return [p.id for g in ind.genes for p in g]
def evolve(population, rankdf, sel_scheme, elite_sel_scheme, mut_prob, popsize, random_winner_prob, bcrxo_prob, num_elite=2):
new_pop = []
#inserting elites
for i in range(num_elite):
new_pop.append(population[int(rankdf.sort_values(elite_sel_scheme).iloc[i][sel_scheme])-1])
#filling in with children
mutate = False
if random.random() <= mut_prob:
mutate = True
while len(new_pop) < popsize:
p1 = select_parents(population, random_winner_prob)
p2 = select_parents(population, random_winner_prob)
children = mate(p1, p2, mutate, bcrxo_prob)
new_pop.extend(children)
return new_pop
def run_ga(stopping_val, popsize, num_generations, num_elite, sel_scheme, elite_sel_scheme, div_imp, fp_imp, mut_prob, bcrxo_prob, random_winner_prob):
np.random.seed(42)
start_time = time.time()
pop = get_pop(popsize)
rankdf = evaluate_pop(pop, sel_scheme, popsize)
min_score = rankdf.cost.min()
pop = [pop[i] for i in list(rankdf.index)]
fitness_scores = []
gen_since_imp = 0
gen_since_mut_inc = 0
for gen in range(num_generations):
curr_score = rankdf.cost.min()
if curr_score < min_score:
min_score = curr_score
gen_since_imp = 0
else:
gen_since_imp += 1
if True:
print("Generation "+str(gen+1)+": ")
print("Minimum cost: "+ str(min_score))
fitness_scores.append(min_score)
pop = evolve(pop, rankdf, sel_scheme, elite_sel_scheme, mut_prob, popsize, random_winner_prob, bcrxo_prob)
rankdf = evaluate_pop(pop, sel_scheme, popsize)
pop = [pop[i] for i in list(rankdf.index)]
best = pop[int(rankdf.sort_values("cost").iloc[0]["final_rank"])-1]
best.save_plot(gen)
if min_score < stopping_val and (rankdf.sort_values("cost").iloc[0]["feasible"]):
print("Stopping criteria reached.")
rankdf = evaluate_pop(pop, sel_scheme, popsize)
break
if (time.time()-start_time > time_limit):
print("Time limit reached")
rankdf = evaluate_pop(pop, sel_scheme, popsize)
break
return best, best.cost, fitness_scores, rankdf
def evolve_mp(population, sel_scheme=lambda x: x.cost, num_elite=2):
new_pop = []
moms = [select_parents(population) for _ in range((len(population))//2)]
dads = [select_parents(population) for _ in range((len(population))//2)]
combs = [c for c in list(zip(moms, dads, np.random.rand(len(moms))>mut_prob)) if len(set(c))==3]
result = mp(mate2, combs, 8)
offspring = list(it.chain.from_iterable(result))
new_pop.extend(offspring)
new_pop.sort(key=sel_scheme)
return new_pop
def mp(func, args, workers):
'''
maps content of args to func in parallel processes with nu_workers processes.
'''
with ProcessPoolExecutor(workers) as ex:
res = ex.map(func, args)
return list(res)
def run_exp(combs):
ind, score, fitness = run_ga(**combs)
res = (combs, score, ind)
return res
# Convert problem no to string padded with zero if less than 9.
if p<10:
p_no = "0"+str(p)
else:
p_no = str(p)
# Read optimal cost (if any)
try:
with open("Testing Data/Solution Files/p"+p_no+".res", "r") as d:
optimal = float(d.readline().strip())
except:
optimal = 0
# Read problem
with open("Testing Data/Data Files/p"+p_no, "r") as d:
data = d.readlines()
stopping_val = optimal*1.05
def clean_line(row):
row = list(map(int, row.strip().split()))
return row
m, n, t = clean_line(data[0])
depot_limits = list(map(clean_line, data[1:t+1]))
cust_rows = list(map(clean_line, data[t+1:t+n+1]))
depot_pos = list(map(clean_line, data[t+n+1:]))
depot_rows = list(zip(depot_limits, depot_pos))
num_rows = m*t
num_customers = n
depots = [Depot(i,d[1][1], d[1][2], d[0][0], d[0][1], m) for i, d in enumerate(depot_rows)]
customers = [Customer(c[0],c[1], c[2], c[3], c[4]) for c in cust_rows]
if p in [1,2,3]:
allow_second = True
else:
allow_second = False
if n<=50:
ps = 300
elif n <= 80:
ps = 400
elif n <=100:
ps = 80
params = {"popsize": [100],
"num_generations": [1000],
"num_elite": [2],
"sel_scheme": ["final_rank"],
"elite_sel_scheme": ["cost"],
"div_imp": [0.3],
"fp_imp": [0.1],
"mut_prob": [0.1],
"bcrxo_prob": [0.7],
"random_winner_prob": [0.1]}
all_combs = sorted(params)
combinations = [dict(zip(all_combs, prod)) for prod in it.product(*(params[var] for var in all_combs))]
print("Params: ")
print(combinations[0])
print("Stopping criteria: ")
print("Cost: "+str(stopping_val))
print("Time: "+str(time_limit))
best, score, fit, rankdf = run_ga(stopping_val, **combinations[0])
print("Final best score: "+str(score))
print()
print("Rankdf:")
print(rankdf.loc[:, ["cost", "feasible", "avg_fp", "diversity", "final_rank"]].head())
print()
best.write_solution()
best.plot()