-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNMDAR_Model.tex
517 lines (399 loc) · 18.1 KB
/
NMDAR_Model.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
\chapter{NMDAR models}
\label{chap:NMDAR_models}
\def\syn{{\text{syn}}}
\def\decay{{\text{decay}}}
\def\rise{{\text{rise}}}
\def\nonNMDA{{\text{non-NMDA}}}
\def\NMDA{{\text{NMDAR}}}
\def\on{{\text{on}}}
\def\off{{\text{off}}}
\def\slope{{\text{slope}}}
NMDAR is discussed in Sect.\ref{sec:NMDAR}.
Functional mapping of neurotransmitter receptors requires rapid and localized
application of transmitter (Sect.\ref{sec:two-photon-uncaging}).
The current via NMDAR is often expressed in the form
\begin{equation}
I_\NMDA = g_\NMDA \times F(V_\post,[\Mg]) \times r_\NMDA
\times \left( V_\post - E_\rev \right)
\end{equation}
with $F(V_\post, [\Mg])$ is the $\Mg$-block function (e.g.
Sect.\ref{sec:NMDAR-Mg-block}), $r_\NMDA$ is the function reflecting the
activation caused by pre-synaptic neurotransmitter release, as in the
form of presynaptic potential depolarization (Sect.\ref{sec:synaptic-efficacy-post-synaptic-factors}).
The fact that $I_\NMDA$ is only large if both $r$ is activated and the
post-synaptic membrane potential $V_\post$ is depolarized simultaneously.
\url{http://www.johndmurray.org/materials/teaching/tutorial_synapse.pdf}
\section{Scheme: 1 agonist T of two binding sites}
Several kinetic schemes are based on the following state diagram, with a single
agonist T but two different binding sites following sequential binding strategy:
\begin{equation}
\begin{split}
\ce{ C_0 <=>[R_bT][R_u] C_1 <=>[R_bT][R_u] C_2 <=>[R_o][R_c] O} \\
\ce{ C_2 <=>[R_r][R_d] D}
\end{split}
\end{equation}
\begin{itemize}
\item D = desensitized form of the receptor
\item single unbinding rate $R_u$
\end{itemize}
The whole-cell recorded NMDAR current, in free $\Mg$ condition, suggested:
$R_b = 5$ (1/($\muM$.sec)), $R_u = 12.9$ (1/sec); $R_d = 8.4$ (1/sec),
$R_o = 46.5$ (1/sec) and $R_c = 73.8$ (1/sec).
The ionic current
\begin{equation}
I_\NMDA = \bar{g_\NMDA} \times B(\Vm) \times f_{[O]} \times (\Vm - E_\NMDA)
\end{equation}
with $\bar{g_\NMDA}$ for single-channel suggested to be in the
range 0.01-0.6 nS (based on the assumption that conductance of dendritic NMDAR
is between 3\% to 62\% of AMPAR (Zhang-Trussell, 1994; Spurston, JOnas, and
Sakmann, 1994)).
In cortical pyramidal neurons, NMDAR is found; and they are quite slow with rise
time of 20 ms and decay times of 25 to 120 ms; compared to AMPAR
(Sect.\ref{sec:AMPAR-kinetics}). Here, $f_{[O]}$ is also modeled as a difference
of exponentials (Sect.\ref{sec:difference-exponentials}).
%\section{$\Mg$ block}
\section{Mg-depenent block}
\label{sec:NMDAR-Mg-block}
\begin{enumerate}
\item Jahr-Stevens (1990) - Sect.\ref{sec:NMDAR-Mg-block-Jahr-Stevens-1990}
\item Ascher, Nowak (1988) - Sect.\ref{sec:NMDAR-Mg-block-Ascher-Nowak-1988}
\item Major-Tank (2008) - Sect.\ref{sec:NMDAR-Mg-block-Major-Tank-2008}
\end{enumerate}
\citep{fino2010} showed that (in MSN at least) it needs 30ms of suprathreshold
depolarization of current injection for removing $\Mg$ block.
They tested with 5ms suprathreshold depolarization (Fig.3D,E) it is not enough
to generate LTP. To remove $\Mg$ block , we need either longer suprathreshold
depolarization or subthreshold depolarization long enough (Fino et al.
2009b). In vivo, cortical or thalamic activity can induce a spike in MSN (Stern,
Jaeger, Wilson 1998).
\begin{equation}
I_{NMDAR} = B(V) \times I_{whatever formula}
\end{equation}
example:
\begin{equation}
I_{whatever formula} = \bar{g_z} (h - m) (V_m - E_z)
\end{equation}
with $z$ is the ion species permeated through NMDA (which can be $\Ca$ or $\K$).
% \begin{equation}
% B(\Vm) = \frac{1}{1 + \frac{[\Mg]_o}{3.57 \text{mM}} \times \exp(-\Vm \times
% 0.062 \text{mV}^{-1})}
% \end{equation}
% NOTE: $[\Mg]_o$ has to be in mM unit, and $\Vm$ has to be in mV.
\section{Ascher, Nowak (1988)}
\label{sec:NMDAR-Mg-block-Ascher-Nowak-1988}
The $\Mg$ block is modeled with forward and backward rate constants based on
Ascher, Nowak (1988) - Sect.\ref{sec:NMDAR-Mg-block}
The given rates were designed at 22$^\circ$C:
\def\ms{{{\text{ms}}}}
\def\mV{{{\text{mV}}}}
\begin{equation}
\begin{split}
\alpha &= A_\alpha \times e^{\frac{\Vm}{V_\text{spread,$\alpha$}}} \qquad \;
A_\alpha = 5.4 \ms^{-1}; V_\text{spread,$\alpha$} = 47 \mV \\
\beta &= A_\beta [\Mg] \times e^{\frac{\Vm}{V_\text{spread,$\beta$}}} \qquad \;
A_\beta = 0.61 \ms^{-1}; V_\text{spread,$\beta$} = 17 \mV
\end{split}
\end{equation}
\section{Jahr-Stevens (1990)}
\label{sec:NMDAR_Jahr-Stevens-1990}
\citep{jahr1990b} first developed a single channel scheme, and then
\citep{jahr1990} used this model to predict the macroscopic current of NMDAR at
different $V_m$ and $[\Mg]_o$ concentrations.
\citep{jahr1990} studied the $V_m-$dependence of NMDAR in the presence of
different concentration of $[\Mg]_o$ (from 1$\muM$ to 10 mM).
\begin{enumerate}
\item The physiological $[\Mg]_o$ is near 1 mM.
At this condition: NMDAR is not opening if post-synaptic $V_m$ is more
negative than -80 mV; and open if $V_m = +20$ mV.
\end{enumerate}
At the single-channel level, the addition of external Mg alters single-channel
openings from long-lived events to many very short events grouped into bursts of
openings. These bursts apparently result from short interruptions of current
flow during periods when the channel is in the open configuration.
The frequency of these interruptions is directly related to Mg concentration.
At single-channel behavior, \citep{jahr1990b} showed that
a model of NMDAR of 3 or 4-state can accurately model the behavior
\begin{itemize}
\item 1 open state
\item 1 closed state
\item 1 or 2 'blocked' state
The first 'blocked' state is $\Mg$-dependent.
The second 'blocked' state is $V_m$-dependent and $\Mg$-independent that is
required to explain short closed state (especially at low $[\Mg]$).
\end{itemize}
Scheme 1: fails (1) (expected to, but did not work) to show open burst (state
transition between O and B) lengthen in proportion to Mg concentration, (2)
to predict $V_m$-dependent of macroscopic currents.
\begin{equation}
\ce{C <=>[\text{neurotransmitter-bound}] O <=>[\text{binding of Mg}][V_m
\text{ depolarize}] B}
\end{equation}
\textcolor{red}{\bf Scheme 2}: 4 states with two Blocking states B1
($V_m$-dependent), B2 ($\Mg$-dependent)
\begin{verbatim}
a1 a2
B1------\ O -----------\ B2
\ b1 \ b2 /
\___ \ /
\ A\ /B2
B1\ _\ /
\_____ C
\end{verbatim}
\begin{itemize}
\item a1 = independent of $[\Mg]_o$
\item a2 = linearly dependent of $[\Mg]_o$
\end{itemize}
\begin{eqnarray}
a_1 = \exp \left( -0.016 V_m - 2.91 \right) \;\;\;\text{ms}^{-1} \\
a_2 = C \exp \left( -0.045 V_m - 6.97 \right) \;\;\;\muM^{-1}\text{ms}^{-1}\\
b_1 = \exp \left( 0.009 V_m + 1.22 \right) \;\;\;\text{ms}^{-1}\\
b_2 = \exp \left( 0.017 V_m + 0.96 \right) \;\;\;\text{ms}^{-1}\\
A = \exp \left( -2.847 \right) \;\;\;\text{ms}^{-1}\\
B_1 = \exp \left( -0.693\right) \;\;\;\text{ms}^{-1}\\
B_2 = \exp \left( -3.101 \right) \;\;\;\text{ms}^{-1}
\end{eqnarray}
NOTE: For microscopic reversibility, the rate $\ce{C ->O}$ are updated
accordinly.
Input for parameter estimations
\begin{enumerate}
\item mean open time
\item mean interruption time
As $V_m$ becomes more positive, the rate of $a_1$ and $a_2$ for entering the
blocked states must become smaller, i.e. approaching zero.
\item mean number of interruptions per burst: $n$
As $V_m$ becomes large and positive, then the number of interruption per burst
become smaller, i.e. $n$ approaches zero.
\end{enumerate}
The gating function $g(V_m)$ is the conductance contributed per channel burst
relative to the amount of conductance that a burst would give at very positive
$V_m$ (where very few interruptions occur). Then the number of opening in a
burst is (n+1), and the mean dwell time in the O state each time the NMDAR
enter is denoted as $t_O$. So, for a single burst, the total time NMDAR in the O
state is
\begin{equation}
(n+1) \times t_O
\end{equation}
So
\begin{equation}
g(V_m) = \frac{(n+1)\times t_O }{\text{ open time per burst for large} V_m}
\end{equation}
NOTE: Both $n(V_m)$ and $t_O(V_m)$ are functions of $V_m$.
When $V_m$ becomes very large and positive, i.e. $\ce{n -> 0}$, so the total
time in O state approaches $t_O(V_m)$, and the mean open time is
\begin{equation}
t_O = \frac{1}{\text{sum of out-going rates}} = \frac{1}{a_1 + a_2 + A}
\end{equation}
\subsection{Mg-block}
\label{sec:NMDAR-Mg-block-Jahr-Stevens-1990}
\begin{equation}
I_{NMDAR} = B(V) \times I_{whatever formula}
\end{equation}
with $B(V)$ is $\Mg$ block factor.
The blocking of $\Mg$ is extremely fast compared to other processes, and thus
can be modeled using instantaneous function of $\Vm$ as a sigmoid function, i.e.
$B(\Vm)$ increases from 0 to 1 when $\Vm$ depolarize.
NOTE: $[\Mg]_o$ has to be in mM unit, and $\Vm$ has to be in mV.
\begin{equation}
B(\Vm) = \frac{1}{1 + \exp\left( -0.062 \Vm \right) \frac{[\Mg]_o}{K_p}}
\end{equation}
with $[\Mg]_o$ is in the range 1-2 mM (physiological conditions); and
$K_p=3.57$ (mM).
\subsection{technical issue}
As the transition C-O (from Closed to Open) is technically difficult to study,
they assumed that theses rates are not significantly influenced by $V_m$. So
for a fixed agonist concentration, the entire gating function depends only on
the fraction of time channels spend in the O rather than B states.
\section{Silver et al. (1992): mossy fiber-granule cell synapse}
\label{sec:mEPSC-mossy-fiber-granule-cell}
The mossy fiber-granule cell synaptic transmission (Sect.\ref{sec:mossy-fiber})
generates a mEPSC with 2 components: fast and slow. Spontaneous mEPSC occurs
with low frequency: 0.21$\pm 0.05$ Hz in unstimulated cells bathed in 0.5$\muM$
TTX (blocking Na+ current).
The authors \citep{silver1992} recorded cerebellar synapses and found that
\begin{itemize}
\item time courses of miniature EPSC and evoked EPSC (Sect.\ref{sec:EPSC}) are
the same
\item mEPSC has an exceptionally fast non-MNDA component: rise time 200 $\mus$
(with pre-filtered rise time < 100 $\mus$); and decay time constant
$\tau=1.3\pm 0.1$ms.
This rise/decay times are in constrast to that of non-NMDAR component in
synapses in other brain regions of $9\pm 1$ msec; and decay time $\tau = 52\pm 5$ msec.
The fast non-NMDAR component has 180$\pm$30 pS conductance.
After that is NMDAR current with $\sim$ 50pS conductance.
\item the fast non-NMDA component has a skewed amplitude distribution; and is
blocked by non-NMDAR receptor antagonist CNQX and NBQX
(Sect.\ref{sec:AMPAR-antagonist})
\item the slow component is blocked by NMDAR antagonist APV (10-20$\muM$), or
$\Mg$ (1mM) or 7-chlorokynurenate (5-10$\muM$)
(Sect.\ref{sec:NMDAR-antagonist})
\item the time-couse of slow AMDAR component is $\tau = 37\pm 10$ msec;
\item the time-course in these synapses are different form synapse in other
regions
\end{itemize}
The AMPA receptor-mediated synaptic currents were modeled by a dual exponential
function, one for the fast non-NMDAR component and one for slow NMDAR component
\begin{itemize}
\item whole-cell recording: $\tau_\nonNMDA = 1.5$ms; $\tau_\NMDA = 52\pm 5$
(ms); curren amplitude ratio: $A_\NMDA/A_\nonNMDA = 0.12 \pm0.01$
\item perforated patch-clamp: $\tau_\nonNMDA = 2.0$ms; $\tau_\NMDA = 49\pm 5$
(ms); curren amplitude ratio: $A_\NMDA/A_\nonNMDA = 0.15 \pm0.02$
\end{itemize}
Final result:
\begin{itemize}
\item $\tau_\nonNMDA = 1.1 $ms; $\tau_\NMDA = 26$ ms;
\item $A_\nonNMDA = 12.6$ (pA); $A_\NMDA = 2.7$ pA
\item mEPSC has a bimodal distribution with 2 peaks: one at 12 pA (for
non-NMDA component); and one at 22 pA (for both NMDAR + AMPAR components)
\end{itemize}
As NMDA current has exponentially rise time and a slower exponentially decay
time, using the formula in
Sect.\ref{sec:exponentially-rise-exponentially-decay}, we have:
\begin{equation}
g_\NMDA = \bar{g_\NMDA} \times 1.273 \times (e^{-t/\tau_\decay} -
e^{-t/\tau_\rise}) \times g_\infty(\Vm, [\Mg]_o)
\end{equation}
with $\tau_\rise = 0.09$ (msec); $\tau_\decay = 1.5$ (msec).
Based on the measurement at synapse of mossy fiber to cerebellar granule cells,
the synaptic peak conductance is 270 $\mu S$ after activation at the synapse.
\section{Koch-Segev (1998)}
\label{sec:NMDAR_Koch-Segev-1998}
The current via NMDAR is modeled with one gating variable $u$
\begin{equation}
I_\NMDAR = \bar{g}_\NMDAR B(V_m)u(V_m - E_\NMDAR)
\end{equation}
with $B(V_m)$ is used to model the non-linearity from $\Mg$ block
\begin{equation}
B(V_m) = \frac{1}{1 + \exp\left( -0.062 V_m \right)\frac{[\Mg]_o}{3.57}}
\end{equation}
The gating variable $u$ is in first-order kinetic equation
\begin{equation}
\frac{du}{dt} = \alpha_u (1-u) - \beta_u u
\end{equation}
with $V_p$ is pre-synaptic voltage, and the rate constants ([sec]$^{-1}$)
\begin{equation}
\begin{split}
\alpha_u &= T_\Glu(V_p) \times c_u \\
\beta_u &= 6.6
\end{split}
\end{equation}
with $c_u = 7.2\times 10^4$ (1/(M.s)) and
\begin{equation*}
T_\Glu(V_p) = \frac{180}{1+\exp\left(-(V_p-2)/5\right)}
\end{equation*}
\section{Major - \ldots - Tank (2008)}
\label{sec:NMDAR-Major-Tank-2008}
The synapse input is modeled with double exponentials with
\begin{itemize}
\item $\tau_\on$ = 0.2 msec
\item $\tau_\off$ = 2 msec
\end{itemize}
NMDAR current was modeled with triple-exponential time course; and a sigmoidal
voltage dependency
\def\slope{{{\text{slope}}}}
\def\fast{{{\text{fast}}}}
\begin{equation}
\begin{split}
g_\NMDA &= \bar{g_\NMDA} \left[ -e ^{-t/\tau_\on} + f_\fast e^{-t/\tau_{\off1}}
+ (1-f_\fast) e^{-t/\tau_{\off2}} p
\right] \\
f_\fast &= f_0 + f_\slope \Vm \\
f_0 &= 0.515 \\
f_\slope &= -0.003125 \qquad \text{1/mV}
\end{split}
\end{equation}
Reversal potential at 0mV; and peak NMDAR conductance
0.875nS.
\subsection{Mg-dependent block}
\label{sec:NMDAR-Mg-block-Major-Tank-2008}
The $\Mg$ block is modeled with forward and backward rate constants based on
Ascher, Nowak (1988) - Sect.\ref{sec:NMDAR-Mg-block-Ascher-Nowak-1988} with
fixed value for $\Mg$ = 1.8 (mM); the given parameters was adjusted from
20$^\circ$C to 35$^\circ$C using Q10=3, i.e. rates were multiplied by 5.196.
So, the sigmoidal steady-state voltage dependency formula is
\begin{equation}
B(V) = \frac{1}{1+ \exp^{-\frac{V-V_{1/2}}{V_\text{spread}}}}
\end{equation}
with $V_{1/2} = -19.9$ (mV); and $V_\text{spreak}$ = 12.48 (mV)
\section{Shouval (2002)}
\label{sec:NMDAR-Shouval (2002)}
This is from \citep{shouval2002} (Sect.\ref{sec:Shouval-2002}).
NMDAR $\Ca$ current is assumed to have 2 components (fast $I_f$ + slow $I_s$:
$\tau_f = 50$ ms, $\tau_s = 200$ ms) following a single exponential form and
both are $V_m$-dependent as a function of $H(V_m)$ based on Jahr-Stevens
(Sect.\ref{sec:NMDAR_Jahr-Stevens-1990})
\begin{equation}
I_\NMDA(t) = P_o \bar{G}_\NMDA \left[ I_f \theta(t) e^{-t/\tau_f} + I_s
\theta(t) e^{-t/\tau_s}\right] H(V_m)
\end{equation}
\begin{itemize}
\item $P_o$ is the fraction of NMDAR from Closed state switching to Open state after
each presynaptic spike (to account for the saturation of NMDAR current. Here,
they chose $P_o$ as a constant value $P_o=0.5$).
\item $\bar{G}_\NMDA = \frac{-1}{500} [\muM/(\text{ms.mV})]$ (negative sign
because of influx current) (they also used $\frac{-1}{1350}$ value in one simulation).
\item $I_f,I_s$ are the relative magnitude of the fast and slow component of
NMDAR $\Ca$ current (the authors assumed $I_f + I_s = 1$).
The time $t=0$ is the time at which glutamate binding, so when $t<0$ there is no
glutamate binding and thus there is no current. This is expressed via the theta
function $\theta(t)$
\begin{equation}
\theta(t) = \left\{ \begin{array}{lc}
0 & \text{ if } t< 0 \\
1 & \text{ if } t\ge 0
\end{array} \right.
\end{equation}
Assumption: two components have the same magnitude, only different decay time.
\item $H(V_m)$ summarizes the $V_m$-dependence as the driving force via
$(V_m-E_\rev)$ and incorporate the effect of $\Mg$-blocking via $B(V_m)$
\begin{equation}
H(V_m) = B(V_m) \times \left( V_m - E_\rev \right)
\end{equation}
with $E_\rev=130 $(mV) as reversal potential for $\Ca$.
\begin{equation}
B(V_m) = \frac{1}{1+\exp(-0.062 V_m)\frac{[\Mg]}{3.57}}
\end{equation}
NOTE: $[\Mg]$ is assumed to be fixed and set to 1.0.
\end{itemize}
\section{Jadi et al. (2012)}
\label{sec:NMDAR-Jadi-2012}
\begin{equation}
I_{NMDAR} = B(V) \times I_{whatever formula}
\end{equation}
with number of NMDAR is $N_\syn$; and maximum single channel conductance is
$\bar{g}_\NMDA$ with opening probability $p(t)$
\begin{equation}
I_{formula} = \bar{g}_\NMDA \times p(t) \times N_\syn
\end{equation}
with
\begin{equation}
p(t) = \frac{e^{-at} - e^{-bt}}{\left(a/b\right)^{\frac{-a}{a-b}} -
\left(a/b\right)^{\frac{-b}{a-b}}}
\end{equation}
with $a=0.02; b=0.3$.
and $\Mg$ block is (whose suppress most current flow at negative potential) -
based on Major et al. (2008) - Sect.\ref{sec:NMDAR-Major-Tank-2008}
\begin{equation}
B(V) = \frac{1}{1 + \exp^{-(\Vm + 7)/12.5}}
\end{equation}
\section{Rui-Kozloski (2013)}
\label{sec:NMDAR-Rui-Kozloski-2013}
They used the formula from Sect.\ref{sec:NMDAR_Koch-Segev-1998}, yet they
assumed the ions is $\Ca$ based on the experiment of Mayer-Westbook (1987).
\begin{equation}
I_\Ca= \bar{g}_\Ca B(V_m)u(V_m - E_\Ca)
\end{equation}
with $g_\Ca=\frac{1}{10}\bar{g}_\NMDA$, and
\begin{equation*}
E_\Ca = 0.04343 \times T \times \log\left( \frac{[\Ca]_o}{[\Ca]_i}\right)
\end{equation*}
with $[\Ca]_o=750 $mM (keep constant).
They also incorporate the effect of Ketamine on NMDAR by assuming (1)
steady-state, (2) uniform distribution. The effect is modeled simply a linear
change in conductance of the NMDAR
\begin{equation}
\begin{split}
\bar{g'}_\NMDAR &= (1-[\Ketamine]_o) \bar{g}_\NMDAR \\
\bar{g'}_\Ca &= (1-[\Ketamine]_o) \bar{g}_\Ca
\end{split}
\end{equation}
with $[\Ketamine]_o$ is extracellular Ketamine dose.