-
Notifications
You must be signed in to change notification settings - Fork 18
/
parser.ml
450 lines (412 loc) · 12.4 KB
/
parser.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
open Str
open Big_int_Z
let shift = 6
let skip s n =
(String.sub s n (String.length s - n))
let nhexa =regexp "^N="
let shexa =regexp "^S="
let whexa =regexp "^W="
let ahexa =regexp "^A="
let bhexa =regexp "^B="
let thexa =regexp "^T="
let jhexa =regexp "^J="
let hexa = regexp "-?\\$?[ABCDEF0123456789]*"
let lemmaExp =regexp "^Lemma"
(* Conversion function *)
let hexstring s =
if (String.contains s '$') then
if (String.contains s '-') then
big_int_of_string ("-0x" ^ (skip s 2)) else
big_int_of_string ("0x" ^ (skip s 1))
else big_int_of_string s
let rec comp2 r =
let (q, r) = quomod_big_int r (big_int_of_int 2) in
if eq_big_int r zero_big_int then
succ_big_int (comp2 q)
else zero_big_int
let gsqr n1 r =
let f = div_big_int n1 r in
let (s1,r1) = quomod_big_int r
(mult_big_int (big_int_of_int 2) f) in
sqrt_big_int
(sub_big_int
(square_big_int r1)
(mult_big_int (big_int_of_int 8) s1))
type certif =
(* Elliptic (n, s, r, a, b, x, y) *)
Elliptic of
big_int * big_int * big_int * big_int * big_int * big_int * big_int
(* Pocklington (n, b, r) *)
| Pocklington of big_int * big_int * big_int
(* External n *)
| External of big_int
(* Error t *)
| Error of int;;
let n = ref zero_big_int
let s = ref zero_big_int
let r = ref zero_big_int
let w = ref zero_big_int
let a = ref zero_big_int
let b = ref zero_big_int
let t = ref zero_big_int
let j = ref zero_big_int
let ty = ref (-1)
let file = ref ""
let co = ref stdout
let sep = ref ""
let res = ref ([] : certif list)
let split = ref false
let fileout = ref "a"
let fileoutflag = ref false
let name = ref "primo"
let debug = ref false
let process_type() =
let elt =
(if !ty != -1 then
(if !ty = 4 then
let n = !n in
let s = !s in
let t = !t in
let j = !j in
let w = !w in
let a =
mult_big_int
(mult_big_int (big_int_of_int 3) j)
(sub_big_int (big_int_of_int 1728) j) in
let b =
mult_big_int
(mult_big_int (big_int_of_int 2) j)
(square_big_int (sub_big_int (big_int_of_int 1728) j)) in
let l = mod_big_int
(add_big_int (power_big_int_positive_int t 3)
(add_big_int (mult_big_int a t) b))
n in
let a = mod_big_int
(mult_big_int a (square_big_int l)) n in
let b = mod_big_int
(mult_big_int b (power_big_int_positive_int l 3)) n in
let x = mod_big_int (mult_big_int t l) n in
let y = mod_big_int (square_big_int l) n in
(r := div_big_int (sub_big_int (add_big_int n (big_int_of_int 1)) w) s;
Elliptic (n, s, !r, a, b, x, y))
else if !ty = 3 then
let n = !n in
let t = !t in
let s = !s in
let w = !w in
let a = !a in
let b = !b in
let l = mod_big_int
(add_big_int (power_big_int_positive_int t 3)
(add_big_int (mult_big_int a t) b))
n in
let a = mod_big_int
(mult_big_int a (square_big_int l)) n in
let b = mod_big_int
(mult_big_int b (power_big_int_positive_int l 3)) n in
let x = mod_big_int (mult_big_int t l) n in
let y = mod_big_int (square_big_int l) n in
(r := div_big_int (sub_big_int (add_big_int n (big_int_of_int 1)) w) s;
Elliptic (n, s, !r, a, b, x, y))
else
Error !ty)
else Error 0)
in (n := !r; elt)
let parse f =
n := zero_big_int;
s := zero_big_int;
r := zero_big_int;
a := zero_big_int;
b := zero_big_int;
t := zero_big_int;
j := zero_big_int;
ty:= (-1);
file := "";
sep := "";
res := [];
let ic = open_in f in
let line = ref "" in
(try
while true do
line := input_line ic;
(if !debug then
(print_string "line="; print_string !line; print_newline()));
if string_match nhexa !line 0 then
(
n := hexstring (skip !line 2);
(if !debug then
(print_string "n="; print_string (string_of_big_int !n);
print_newline()));
r := !n)
else if string_match shexa !line 0 then
(s := (hexstring (skip !line 2)); ty := 4;
(if !debug then
(print_string "s="; print_string (string_of_big_int !s);
print_newline()));
)
else if string_match whexa !line 0 then
(w := (hexstring (skip !line 2));
(if !debug then
(print_string "w="; print_string (string_of_big_int !w);
print_newline()));
)
else if string_match ahexa !line 0 then
(a := (hexstring (skip !line 2)); ty := 3;
(if !debug then
(print_string "a="; print_string (string_of_big_int !a);
print_newline()));
)
else if string_match bhexa !line 0 then
(b := (hexstring (skip !line 2));
(if !debug then
(print_string "b="; print_string (string_of_big_int !b);
print_newline()));
)
else if string_match jhexa !line 0 then
(j := (hexstring (skip !line 2));
(if !debug then
(print_string "j="; print_string (string_of_big_int !j);
print_newline()));
)
else if string_match thexa !line 0 then
(t := (hexstring (skip !line 2));
(if !debug then
(print_string "t="; print_string (string_of_big_int !t);
print_newline()));
res := process_type() :: !res; ty := -1)
done
with e ->
close_in_noerr ic);
(if !debug then
(print_string "external=";
print_string (string_of_big_int !r); print_newline()));
List.rev (External !r :: !res)
let rec gen_name k l =
match l with
[] -> ()
| Elliptic (n, s, r, a, b, x, y) :: l1 ->
print_string "Let p" ; print_int k; print_string " = ";
print_string (string_of_big_int n); print_string ";"; print_newline();
gen_name (k + 1) l1
| Pocklington (n, b, r) :: l1 ->
print_string "Let p" ; print_int k; print_string " = ";
print_string (string_of_big_int n); print_string ";"; print_newline();
gen_name (k + 1) l1
| External n :: l1 ->
print_string "Let p" ; print_int k; print_string " = ";
print_string (string_of_big_int n); print_string ";"; print_newline();
gen_name (k + 1) l1
| _ :: l1 ->
print_string "(* Error *)"; print_newline(); gen_name (k + 1) l1
let pe s =
output_string !co s;
output_string !co "\n";
flush !co
let pef s =
output_string !co s;
flush !co
let print_header () =
pe "From Coqprime Require Import PocklingtonRefl.";
pe "Local Open Scope positive_scope."
let split_begin k =
if !split then
(let fname = !fileout ^ "_" ^ (string_of_int k) ^ ".v" in
co := open_out fname;
print_header())
let split_close k =
if !split then
(close_out !co)
let print_elliptic k n s r a b x y =
split_begin k;
pe "";
pe ("Lemma " ^ !name ^ (string_of_int k) ^
":");
pe (" prime " ^ (string_of_big_int r) ^ "->");
pe (" prime " ^ (string_of_big_int n) ^ ".");
pe "Proof.";
pe "intro H.";
pe "apply (Pocklington_refl ";
pe (" (Ell_certif");
pe (" " ^ (string_of_big_int n));
pe (" " ^ (string_of_big_int s));
pe (" ((" ^ (string_of_big_int r) ^ ",1)::nil)");
pe (" " ^ (string_of_big_int a));
pe (" " ^ (string_of_big_int b));
pe (" " ^ (string_of_big_int x));
pe (" " ^ (string_of_big_int y) ^ ")");
pe " ((Proof_certif _ H) :: nil)).";
pe "native_cast_no_check (refl_equal true).";
pe "Time Qed.";
split_close k
let print_external k n =
let fname = !fileout ^ "_" ^ (string_of_int k) ^ ".v" in
let _ = Sys.command (Filename.dirname (Sys.executable_name)^
"/pocklington -o " ^ fname ^ " -n " ^ !name ^
(string_of_int k)^ " " ^
(string_of_big_int n)) in
if (not !split) then
(let ic = open_in fname in
let line = ref "" in
let flag = ref false in
(try
while true do
line := input_line ic;
if string_match lemmaExp !line 0 then flag := true;
if !flag then pe !line
done
with e ->
close_in_noerr ic);
Sys.remove fname)
let print_pocklington k n b r =
split_begin k;
pe "";
pe ("Lemma " ^ !name ^ (string_of_int k) ^
":");
pe (" prime " ^ (string_of_big_int r) ^ "->");
pe (" prime " ^ (string_of_big_int n) ^ ".");
pe "Proof.";
pe "intro H.";
pe "apply (Pocklington_refl ";
pe (" (SPock_certif ");
pe (" " ^ (string_of_big_int n));
pe (" " ^ (string_of_big_int b));
pe (" ((" ^ (string_of_big_int r) ^ ", 1)::nil))" );
pe " ((Proof_certif _ H) :: nil)).";
pe "native_cast_no_check (refl_equal true).";
pe "Time Qed.";
split_close k
let rec print_goals k l =
match l with
[] -> ()
| Elliptic (n, s, r, a, b, x, y) :: l1 ->
print_elliptic k n s r a b x y;
print_goals (k + 1) l1
| Pocklington (n, b, r) :: l1 ->
print_pocklington k n b r;
print_goals (k + 1) l1
| External n :: l1 ->
print_external k n;
print_goals k l1
| _ :: l1 ->
print_goals k l1
let rec rprint_main k l =
match l with
[] -> ()
| Elliptic (n, s, r, a, b, x, y) :: l1 ->
pef ("(");
pef (!name ^ (string_of_int k) ^ " ");
rprint_main (k + 1) l1;
pef (")");
| Pocklington (n, b, r) :: l1 ->
pef ("(");
pef (!name ^ (string_of_int k)^ " ");
rprint_main (k + 1) l1;
pef (")");
| External n :: l1 ->
pef (!name ^ (string_of_int k));
rprint_main k l1
| _ :: l1 ->
rprint_main k l1
let rec print_main l =
match l with
[] -> ()
| Elliptic (n, s, r, a, b, x, y) :: _ ->
pe ("");
pe ("Lemma " ^ !name ^ ": prime " ^
(string_of_big_int n)^ ".");
pe ("Proof.");
pe ("exact");
rprint_main 0 l;
pe (".");
pe ("Qed.")
| Pocklington (n, b, r) :: l1 ->
pe ("");
pe ("Lemma " ^ !name ^ ": prime " ^
(string_of_big_int n)^ ".");
pe ("Proof.");
pe ("exact");
rprint_main 0 l;
pe (".");
pe ("Qed.")
| External n :: l1 ->
pe ("");
pe ("Lemma " ^ !name ^ " : prime " ^
(string_of_big_int n)^ ".");
pe ("Proof.");
pef ("exact ");
rprint_main 0 l;
pe (".");
pe ("Qed.")
| _ :: l1 ->
print_main l1
let rec print_require k l =
match l with
[] -> ()
| Elliptic (n, s, r, a, b, x, y) :: l1 ->
pe ("Require Import " ^ !fileout ^ "_" ^ (string_of_int k) ^ ".");
print_require (k + 1) l1
| Pocklington (n, b, r) :: l1 ->
pe ("Require Import " ^ !fileout ^ "_" ^ (string_of_int k) ^ ".");
print_require (k + 1) l1
| External n :: l1 ->
pe ("Require Import " ^ !fileout ^ "_" ^ (string_of_int k) ^ ".");
print_require (k + 1) l1
| _ :: l1 ->
print_require k l1
let rec print_make k l =
match l with
[] -> ()
| Elliptic (n, s, r, a, b, x, y) :: l1 ->
pe (!fileout ^ "_" ^ (string_of_int k) ^ ".v");
print_make (k + 1) l1
| Pocklington (n, b, r) :: l1 ->
pe (!fileout ^ "_" ^ (string_of_int k) ^ ".v");
print_make (k + 1) l1
| External n :: l1 ->
pe (!fileout ^ "_" ^ (string_of_int k) ^ ".v");
print_make (k + 1) l1
| _ :: l1 ->
print_make k l1
let _ =
let v = ref (Array.length Sys.argv) in
let k = ref 1 in
let flag = ref true in
while !flag do
if Sys.argv.(!k) = "-split" then
(k := !k + 1; v := !v -1; split := true)
else if Sys.argv.(!k) = "-o" then
(k := !k + 2; v := !v - 2;
(try
fileout := Filename.chop_extension (Sys.argv.(!k - 1))
with e -> fileout := Sys.argv.(!k - 1));
fileoutflag := true)
else if Sys.argv.(!k) = "-n" then
(k := !k + 2; v := !v - 2; name := Sys.argv.(!k - 1))
else (flag := false)
done;
if (!v) == 2 then
(let p = parse Sys.argv.(!k) in
if (not !fileoutflag) then
(try
fileout := Filename.chop_extension (Sys.argv.(!k))
with e -> fileout := Sys.argv.(!k));
if (not !split) then
(let fname = !fileout ^ ".v" in
co := open_out fname;
print_header ());
print_goals 0 p;
if (!split) then
(let fname = !fileout ^ ".v" in
co := open_out fname;
print_header ();
print_require 0 p);
print_main p;
close_out !co;
if (!split) then
(let fname = !fileout ^ "_make" in
co := open_out fname;
pe (!fileout ^ ".v");
print_make 0 p);
close_out !co)
else (print_string "o2v [-split] [-o file.out] [-n name] file.in ";
print_newline())