-
Notifications
You must be signed in to change notification settings - Fork 18
/
factorize.c
665 lines (581 loc) · 15.2 KB
/
factorize.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/*
(*************************************************************)
(* This file is distributed under the terms of the *)
(* GNU Lesser General Public License Version 2.1 *)
(*************************************************************)
(*************************************************************)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "certif.h"
#include "ecm.h"
#include "gmp.h"
#if defined(__STDC__) || defined(__cplusplus) || defined(_AIX) || \
defined(__DECC) || (defined(__mips) && defined(_SYSTYPE_SVR4)) || \
defined(_MSC_VER) || defined(_WIN32)
#define __ECM_HAVE_TOKEN_PASTE 1
#else
#define __ECM_HAVE_TOKEN_PASTE 0
#endif
#ifndef __ECM
#if __ECM_HAVE_TOKEN_PASTE
#define __ECM(x) __ecm_##x
#else
#define __ECM(x) __ecm_ /**/ x
#endif
#endif
#define pp1_random_seed __ECM(pp1_random_seed)
void pp1_random_seed(mpz_t, mpz_t, gmp_randstate_t);
#define pm1_random_seed __ECM(pm1_random_seed)
void pm1_random_seed(mpz_t, mpz_t, gmp_randstate_t);
#define get_random_ul __ECM(get_random_ul)
unsigned long get_random_ul(void);
static unsigned add[] = {4, 2, 4, 2, 4, 6, 2, 6};
void factor_using_division(mpz_t t, pock_certif_t c) {
mpz_t q, r;
unsigned long int f;
int ai;
unsigned *addv = add;
unsigned int failures;
unsigned int limit;
/* Set the trial division limit according the size of n. */
limit = mpz_sizeinbase(t, 2);
if (limit > 1000)
limit = 1000 * 1000;
else
limit = limit * limit;
if (flag_verbose) {
printf("[using trivial division (%u)] ", limit);
fflush(stdout);
}
mpz_init(q);
mpz_init(r);
f = mpz_scan1(t, 0);
mpz_div_2exp(t, t, f);
while (f) {
if (flag_verbose) {
printf("2 ");
fflush(stdout);
}
dec_add_ui(c, 2);
f--;
}
for (;;) {
mpz_tdiv_qr_ui(q, r, t, 3);
if (mpz_cmp_ui(r, 0) != 0) break;
mpz_set(t, q);
if (flag_verbose) {
printf("3 ");
fflush(stdout);
}
dec_add_ui(c, 3);
}
for (;;) {
mpz_tdiv_qr_ui(q, r, t, 5);
if (mpz_cmp_ui(r, 0) != 0) break;
mpz_set(t, q);
if (flag_verbose) {
printf("5 ");
fflush(stdout);
}
dec_add_ui(c, 5);
}
failures = 0;
f = 7;
ai = 0;
while (mpz_cmp_ui(t, 1) != 0) {
mpz_tdiv_qr_ui(q, r, t, f);
if (mpz_cmp_ui(r, 0) != 0) {
f += addv[ai];
if (mpz_cmp_ui(q, f) < 0) break;
ai = (ai + 1) & 7;
failures++;
if (failures > limit) break;
} else {
mpz_swap(t, q);
if (flag_verbose) {
printf("%lu ", f);
fflush(stdout);
}
dec_add_ui(c, f);
failures = 0;
}
}
if (flag_verbose) fprintf(stdout, "\n");
mpz_clear(q);
mpz_clear(r);
return;
}
void out_factor(mpz_t f, pock_certif_t c) {
mpz_out_str(stdout, 10, f);
fprintf(stdout, " (%lu digits, F1 %lu digits) \n", mpz_sizeinbase(f, 10),
mpz_sizeinbase(c->_F1, 10));
fflush(stdout);
return;
}
int factor_using_pollard_rho(mpz_t n, int a_int, unsigned long p,
pock_certif_t pc) {
mpz_t x, x1, y, P;
mpz_t a;
mpz_t g;
mpz_t t1, t2;
int k, l, c, i, res;
if (flag_verbose) {
printf("[pollard-rho (%d)] ", a_int);
fflush(stdout);
}
mpz_init(g);
mpz_init(t1);
mpz_init(t2);
mpz_init_set_si(a, a_int);
mpz_init_set_si(y, 2);
mpz_init_set_si(x, 2);
mpz_init_set_si(x1, 2);
k = 1;
l = 1;
mpz_init_set_ui(P, 1);
c = 0;
res = 0;
while (!res) {
S2:
if (p != 0) {
mpz_powm_ui(x, x, p, n);
mpz_add(x, x, a);
} else {
mpz_mul(x, x, x);
mpz_add(x, x, a);
mpz_mod(x, x, n);
}
mpz_sub(t1, x1, x);
mpz_mul(t2, P, t1);
mpz_mod(P, t2, n);
c++;
if (c == 20) {
c = 0;
mpz_gcd(g, P, n);
if (mpz_cmp_ui(g, 1) != 0) goto S4;
mpz_set(y, x);
}
/*S3: */
k--;
if (k > 0) goto S2;
mpz_gcd(g, P, n);
if (mpz_cmp_ui(g, 1) != 0) goto S4;
mpz_set(x1, x);
k = l;
l = 2 * l;
for (i = 0; i < k; i++) {
if (p != 0) {
mpz_powm_ui(x, x, p, n);
mpz_add(x, x, a);
} else {
mpz_mul(x, x, x);
mpz_add(x, x, a);
mpz_mod(x, x, n);
}
}
mpz_set(y, x);
c = 0;
goto S2;
S4:
do {
if (p != 0) {
mpz_powm_ui(y, y, p, n);
mpz_add(y, y, a);
} else {
mpz_mul(y, y, y);
mpz_add(y, y, a);
mpz_mod(y, y, n);
}
mpz_sub(t1, x1, y);
mpz_gcd(g, t1, n);
} while (mpz_cmp_ui(g, 1) == 0);
if (!mpz_probab_prime_p(g, 3)) {
do {
mp_limb_t a_limb;
mpn_random(&a_limb, (mp_size_t)1);
a_int = (int)a_limb;
} while (a_int == -2 || a_int == 0);
if (flag_verbose) {
printf("[composite factor--restarting pollard-rho] ");
fflush(stdout);
}
res = factor_using_pollard_rho(g, a_int, p, pc);
break;
} else {
dec_add_mpz(pc, g);
if (flag_verbose) out_factor(g, pc);
res = check_pock(pc);
if (res) break;
}
mpz_div(n, n, g);
mpz_mod(x, x, n);
mpz_mod(x1, x1, n);
mpz_mod(y, y, n);
if (mpz_probab_prime_p(n, 3)) {
dec_add_mpz(pc, n);
if (flag_verbose) out_factor(n, pc);
res = check_pock(pc);
break;
}
}
mpz_clear(g);
mpz_clear(P);
mpz_clear(t2);
mpz_clear(t1);
mpz_clear(a);
mpz_clear(x1);
mpz_clear(x);
mpz_clear(y);
return res;
}
static double B1_table[] = {11000, 50000, 250000, 1000000,
3000000, 11000000, 43000000, 110000000,
260000000, 850000000};
static int it_table[] = {107, 261, 513, 1071, 2753,
5208, 8704, 20479, 47888, 78923};
static int size_table[] = {20, 25, 30, 35, 40, 45, 50, 55, 60, 65};
int ecm_factorize(mpz_t n, pock_certif_t c);
int my_ecm_factor(mpz_t n, pock_certif_t c, double B1, int iterate) {
int iterate1 = iterate;
iterate = 1;
int i, res, found;
mpz_t f;
gmp_randstate_t randstate;
ecm_params params;
mpz_init(f);
ecm_init(params);
if (flag_verbose) params->verbose = 1;
gmp_randinit_default(randstate);
gmp_randseed_ui(randstate, get_random_ul());
params->B1done = 0;
if (B1 > 11000) {
/* mpz_set_si (params->B2min, -1); */
params->S = ECM_DEFAULT_S;
mpz_set_si(params->B2, ECM_DEFAULT_B2);
/* params->B2 = B1 * 10; */
}
res = 0;
i = 0;
iterate += 5;
while (i < iterate && !res && mpz_cmp_ui(n, 1) != 0) {
if (i == 0) { /* start with pm1 */
if (flag_verbose) {
printf("using pm1 with B1 = %1.0f ", B1);
fflush(stdout);
}
params->method = ECM_PM1;
pm1_random_seed(params->x, n, randstate);
found = ecm_factor(f, n, B1, params);
if (found) {
mpz_tdiv_q(n, n, f);
if (mpz_probab_prime_p(f, 3)) {
dec_add_mpz(c, f);
if (flag_verbose) out_factor(f, c);
res = check_pock(c);
} else {
if (flag_verbose) {
fprintf(stdout, "composite factor ");
mpz_out_str(stdout, 10, f);
fprintf(stdout, "(%lu digits)\n", mpz_sizeinbase(f, 10));
fflush(stdout);
}
if (B1 == 11000)
res = factor_using_pollard_rho(f, 1, 0, c);
else
res = ecm_factorize(f, c);
}
if (!res && mpz_cmp_ui(n, 1) != 0 && mpz_probab_prime_p(n, 3)) {
dec_add_mpz(c, n);
if (flag_verbose) out_factor(n, c);
mpz_tdiv_q(n, n, n);
res = check_pock(c);
}
} else
i++;
if (flag_verbose) printf("\n");
} else if (0 < i && i <= 3) {
/* do 3 time pp1 */
params->method = ECM_PP1;
mpz_set_ui(params->x, 0);
if (flag_verbose && i == 1) {
printf("using pp1 with B1 = %1.0f ", B1);
fflush(stdout);
}
pp1_random_seed(params->x, n, randstate);
params->B1done = 0;
found = ecm_factor(f, n, B1, params);
if (found) {
mpz_tdiv_q(n, n, f);
if (mpz_probab_prime_p(f, 3)) {
dec_add_mpz(c, f);
if (flag_verbose) out_factor(f, c);
res = check_pock(c);
} else {
if (flag_verbose) {
fprintf(stdout, "composite factor ");
mpz_out_str(stdout, 10, f);
fprintf(stdout, "(%lu digits)\n", mpz_sizeinbase(f, 10));
fflush(stdout);
}
if (B1 == 11000)
res = factor_using_pollard_rho(f, 1, 0, c);
else
res = ecm_factorize(f, c);
}
if (!res && mpz_cmp_ui(n, 1) != 0 && mpz_probab_prime_p(n, 3)) {
dec_add_mpz(c, n);
if (flag_verbose) out_factor(n, c);
mpz_tdiv_q(n, n, n);
res = check_pock(c);
}
i = 0; /* restarting to factorize */
} else
i++;
if (flag_verbose && i == 3) printf("\n");
} else { /* continue with ecm */
params->method = ECM_ECM;
mpz_set_ui(params->x, 0);
if (flag_verbose && i == 4) {
printf("using ecm with B1 = %1.0f ", B1);
fflush(stdout);
}
mpz_set_ui (params->sigma, 0);
/*
mpz_urandomb (params->sigma, randstate, 32);
mpz_add_ui (params->sigma, params->sigma, 6);
*/
params->B1done = 0;
params->k = iterate1;
found = ecm_factor(f, n, B1, params);
if (found > 0) { /* found a factor */
mpz_tdiv_q(n, n, f);
if (mpz_probab_prime_p(f, 3)) {
dec_add_mpz(c, f);
if (flag_verbose) out_factor(f, c);
res = check_pock(c);
} else {
if (flag_verbose) {
fprintf(stdout, "composite factor ");
mpz_out_str(stdout, 10, f);
fprintf(stdout, "(%lu digits)\n", mpz_sizeinbase(f, 10));
fflush(stdout);
}
if (B1 == 11000)
res = factor_using_pollard_rho(f, 1, 0, c);
else
res = ecm_factorize(f, c);
}
if (!res && mpz_cmp_ui(n, 1) != 0 && mpz_probab_prime_p(n, 3)) {
dec_add_mpz(c, n);
if (flag_verbose) out_factor(n, c);
mpz_tdiv_q(n, n, n);
res = check_pock(c);
}
i = 0; /* restarting to factorize */
} else
i++;
}
}
if (flag_verbose) printf("\n");
ecm_clear(params);
mpz_clear(f);
return res;
}
int ecm_factorize(mpz_t n, pock_certif_t c) {
int iB1, res = 0;
mpz_t n1;
mpz_init(n1);
/*res = my_ecm_factor(n, c, B1_table[0], 4);
if (!res) res = my_ecm_factor(n, c, B1_table[1], 4);
if (!res) res = my_ecm_factor(n, c, B1_table[2], 4);
if (!res) res = my_ecm_factor(n, c, B1_table[3], 3);
if (!res) res = my_ecm_factor(n, c, B1_table[4], 2); */
for (iB1 = 0; !res && iB1 < 10 && mpz_cmp_ui(n, 1) != 0; iB1++) {
if (flag_verbose) {
printf("Searching factor for ");
gmp_printf("%Zd", n);
printf(" of %i digits\n", size_table[iB1]);
}
mpz_set(n1, n);
res = my_ecm_factor(n, c, B1_table[iB1], it_table[iB1]);
if (mpz_cmp(n1, n) != 0) {
if (flag_verbose) {
printf("Some progress !! \n");
}
iB1 = -1;
}
}
return res;
}
int factorize_no_small(mpz_t n, pock_certif_t c) {
int res;
if (mpz_probab_prime_p(n, 3)) {
if (flag_verbose) mpz_out_str(stdout, 10, n);
dec_add_mpz(c, n);
res = check_pock(c);
} else
res = ecm_factorize(n, c);
if (flag_verbose) {
fprintf(stdout, "\n");
fflush(stdout);
}
return res;
}
int factorize(mpz_t n, pock_certif_t c) {
int res;
/* compute the factorization */
if (flag_verbose) {
fprintf(stdout, " factorize ");
mpz_out_str(stdout, 10, n);
fflush(stdout);
fprintf(stdout, "\n ");
fprintf(stdout, " of %lu digits\n", mpz_sizeinbase(n, 10));
fflush(stdout);
}
factor_using_division(n, c);
res = check_pock(c);
if (!res) res = factorize_no_small(n, c);
if (flag_verbose) {
fprintf(stdout, "\n");
fflush(stdout);
}
return res;
}
int factorize_mersenne(unsigned long int p, pock_certif_t c) {
unsigned long int q;
int i, iB1, res, used;
mpz_t n;
__mpz_struct dec[100];
if (flag_verbose) {
fprintf(stdout, "\nfactorize mersenne %lu\n", p);
fflush(stdout);
}
used = 0;
q = p;
mpz_init(n);
while (q > 3) {
if (q % 2 == 0) {
q = q / 2;
mpz_set_ui(n, 1); /* n = 1 */
mpz_mul_2exp(n, n, q); /* n = 2^q */
mpz_add_ui(n, n, 1); /* n = 2^q + 1 */
factor_using_division(n, c);
mpz_init_set(&(dec[used]), n);
used++;
} else if (q % 3 == 0) {
q = q / 3;
mpz_set_ui(n, 1); /* n = 1 */
mpz_mul_2exp(n, n, q); /* n = 2^q */
mpz_add_ui(n, n, 1); /* n = 2^q + 1 */
mpz_mul_2exp(n, n, q); /* n = 2^(2q) + 2^q */
mpz_add_ui(n, n, 1); /* n = 2^(2q) + 2^q + 1 */
factor_using_division(n, c);
mpz_init_set(&(dec[used]), n);
used++;
} else
break;
}
switch (q) {
case 1:
break;
case 2:
dec_add_ui(c, 3);
break;
case 3:
dec_add_ui(c, 7);
break;
default:
mpz_set_ui(n, 1);
mpz_mul_2exp(n, n, q);
mpz_sub_ui(n, n, 1);
factor_using_division(n, c);
mpz_init_set(&(dec[used]), n);
used++;
break;
}
res = check_pock(c);
iB1 = 0;
while (!res && iB1 < 10) {
for (i = 0; i < used && !res; i++) {
if (mpz_cmp_ui(&(dec[i]), 1) != 0)
res = my_ecm_factor(&(dec[i]), c, B1_table[iB1], it_table[iB1]);
}
iB1++;
}
mpz_clear(n);
return res;
}
pock_certif_t mersenne_certif(mpz_t t, unsigned long int p) {
pock_certif_t c;
c = pock_init(t);
dec_add_ui(c, 2);
factorize_mersenne(p - 1, c);
finalize_pock(c);
return c;
}
pock_certif_t pock_certif(mpz_t t) {
mpz_t tm1;
pock_certif_t c;
if (flag_verbose) {
fprintf(stdout, "pocklington ");
mpz_out_str(stdout, 10, t);
fflush(stdout);
fprintf(stdout, "\n");
fflush(stdout);
}
/* initialize the decompostion */
c = pock_init(t);
/* compute t - 1 */
mpz_init_set(tm1, c->_R1);
/* compute the factorisation */
int res = factorize(tm1, c);
if (flag_verbose) {
if (res) {
fprintf(stdout, "the certificate is valid");
} else {
fprintf(stdout, "the certificate is unvalid");
}
fprintf(stdout, "\n");
fflush(stdout);
}
mpz_clear(tm1);
finalize_pock(c);
return c;
}
int MAXPROOFPRIMES = 48611; /* 5000 first ones */
pre_certif_t certif_2;
void extend_lc(certif_t lc, pock_certif_t c, unsigned long int min,
unsigned long int max) {
int i, size;
mpz_ptr *ptr;
mpz_t t;
mpz_init(t);
ptr = c->_dec;
size = c->_used;
if (c->_pow2 > 0 && !_2_is_in(lc)) {
mpz_t t2;
pre_certif_t ct;
mpz_init_set_ui(t2, 2);
ct = mk_proof_certif(t2);
add_pre(ct, lc);
mpz_clear(t2);
}
for (i = size - 1; i >= 0; i--) {
mpz_set(t, ptr[i]);
if (!is_in(t, lc)) {
pre_certif_t ct;
if (mpz_cmp_ui(t, MAXPROOFPRIMES) <= 0 ||
(mpz_cmp_ui(t, min) >= 0 && (mpz_cmp_ui(t, max) <= 0)))
ct = mk_proof_certif(t);
else {
ct = mk_pock_certif(pock_certif(t));
extend_lc(lc, ct->_certif._pock, min, max);
}
add_pre(ct, lc);
}
}
return;
}