forked from rncm-prism/prism-samplernn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chunk_audio.py
87 lines (73 loc) · 2.63 KB
/
chunk_audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Adapted from https://github.com/timothymeehan/ambient_music_generator/blob/master/code/chunk_audio_overlap.py
import os
import sys
import argparse
from pydub import AudioSegment
from pydub import silence
parser = argparse.ArgumentParser(description='Split a .wav file into chunks')
parser.add_argument('--input_file', type=str, required=True, help='Path to the input .wav file')
parser.add_argument('--output_dir', type=str, required=True, help='Output directory for the chunks')
parser.add_argument('--chunk_length', type=int, default=8000, help='Output chunk size in milliseconds')
parser.add_argument('--overlap', type=int, default=0, help='Overlap between consecutive chunks in milliseconds')
args = parser.parse_args()
input_file = args.input_file
output_dir = args.output_dir
chunk_length = args.chunk_length
overlap = args.overlap
# Create output dir if it doesn't exist
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Checks for silent chunks
def is_silent(chunk, chunk_length):
# if at least half of chunk is silence, mark as silent
silences = silence.detect_silence(
chunk,
min_silence_len=int(chunk_length/2),
silence_thresh=-64)
if silences:
return True
else:
return False
# Load file and set directories
audio = AudioSegment.from_wav(input_file)
input_filename = input_file.split('/')[-1].replace('.wav', '')
# Get length of audio
audio_len = len(audio)
# Initialize start and end seconds to 0
start = 0
end = 0
# Iterate from 0 to end of the file,
# with increment = chunk_length
cnt = 0
num_silent = 0
flag = 0 # Break loop once we reach the end of the audio
for i in range(0, 8 * audio_len, chunk_length):
# At first, start is 0, end is the chunk_length
# Else, start=prvs end-overlap, end=start+chunk_length
if i == 0:
start = 0
end = chunk_length
else:
start = end - overlap
end = start + chunk_length
# Set flag to 1 if endtime exceeds length of file
if end >= audio_len:
end = audio_len
flag = 1
# Storing audio file from the defined start to end
chunk = audio[start:end]
if flag == 0:
cnt = cnt + 1
chunk_is_silent = is_silent(chunk, chunk_length)
if chunk_is_silent:
print('Chunk {} is silent, omitting it.'.format(cnt))
num_silent = num_silent + 1
else:
filename = input_filename + f'_chunk_{cnt}.wav'
chunk.export(os.path.join(output_dir, filename), format="wav")
print("Processing chunk " + str(cnt) + ". Start = "
+ str(start) + " end = " + str(end))
print('\n')
print("Finished chunking {}.".format(input_file))
print("{} chunks processed, {} were silent.".format(cnt, num_silent))
print("Saved {} chunks to {}.".format(cnt - num_silent, output_dir))