-
Notifications
You must be signed in to change notification settings - Fork 3
/
vrt_rffft.cpp
494 lines (407 loc) · 17.7 KB
/
vrt_rffft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#include <zmq.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <fftw3.h>
#include <getopt.h>
#include <time.h>
#include <sys/time.h>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/program_options.hpp>
#include <boost/filesystem.hpp>
#include <boost/algorithm/string.hpp>
#include <chrono>
#include <csignal>
#include <fstream>
#include <iostream>
#include <thread>
// VRT
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <vrt/vrt_read.h>
#include <vrt/vrt_string.h>
#include <vrt/vrt_types.h>
#include <vrt/vrt_util.h>
#include <complex.h>
#include "vrt-tools.h"
namespace po = boost::program_options;
#define SCALE_MAX 32768
#define REAL 0
#define IMAG 1
static bool stop_signal_called = false;
void sig_int_handler(int)
{
stop_signal_called = true;
}
template <typename samp_type> inline float get_abs_val(samp_type t)
{
return std::fabs(t);
}
inline float get_abs_val(std::complex<int16_t> t)
{
return std::fabs(t.real());
}
inline float get_abs_val(std::complex<int8_t> t)
{
return std::fabs(t.real());
}
void usage(void)
{
printf("rffft: FFT RF observations\n\n");
printf("-i <file> Input file (can be fifo) [stdin]\n");
printf("-p <prefix> Output prefix\n");
printf("-o <output> Output filename [default: YYYY-MM-DDTHH:MM:SS.sss_XXXXXX.bin]\n");
printf("-f <frequency> Center frequency (Hz)\n");
printf("-s <samprate> Sample rate (Hz)\n");
printf("-c <chansize> Channel size [100Hz]\n");
printf("-t <tint> Integration time [1s]\n");
printf("-n <nsub> Number of integrations per file [60]\n");
printf("-m <use> Use every mth integration [1]\n");
printf("-F <format> Input format char, int, float [int]\n");
printf("-T <start time> YYYY-MM-DDTHH:MM:SSS.sss\n");
printf("-R <fmin,fmax> Frequency range to store (Hz)\n");
printf("-S <index> Starting index [int]\n");
printf("-I Invert frequencies\n");
printf("-b Digitize output to bytes [off]\n");
printf("-q Quiet mode, no output [off]\n");
printf("-h This help\n");
return;
}
int main(int argc, char* argv[])
{
int i,j,k,l,nchan,m=0,nint=1,nsub=60,flag,nuse=1,imin,imax,partial=0;
fftwf_complex *c,*d;
fftwf_plan fft;
FILE *outfile;
char outfname[128]="",prefix[32]="";
char outformat='f';
char *cbuf;
float *fbuf;
float *z,length,fchan=100.0,tint=1.0,zavg,zstd,*zw;
char *cz;
double freq,samp_rate,mjd,freqmin=-1,freqmax=-1;
struct timeval start,end;
char tbuf[30],nfd[32],header[256]="";
int sign=1;
// variables to be set by po
std::string zmq_address, path, output;
uint16_t port;
uint32_t channel;
int hwm;
size_t num_requested_samples;
double total_time;
// setup the program options
po::options_description desc("Allowed options");
// clang-format off
desc.add_options()
("help", "help message")
("nsamps", po::value<size_t>(&num_requested_samples)->default_value(0), "total number of samples to receive")
("duration", po::value<double>(&total_time)->default_value(0), "total number of seconds to receive")
("channel", po::value<uint32_t>(&channel)->default_value(0), "VRT channel")
("path", po::value<std::string>(&path)->default_value("."), "Output path")
("output", po::value<std::string>(&output), "Output filename [default: YYYY-MM-DDTHH:MM:SS.sss_XXXXXX.bin]")
("chan-size", po::value<float>(&fchan)->default_value(100), "Channel size [Hz]")
("t-int", po::value<float>(&tint)->default_value(1.0), "Integration time [sec]")
("n-sub", po::value<int>(&nsub)->default_value(60), "Number of integrations per file")
("use", po::value<int>(&nuse)->default_value(1), "Use every n-th integration")
("freq-min", po::value<double>(&freqmin), "Frequency range to store (Hz)")
("freq-max", po::value<double>(&freqmax), "Frequency range to store (Hz)")
("progress", "periodically display short-term bandwidth")
("int-second", "align start of reception to integer second")
("quiet", "Quiet mode, no output")
("continue", "don't abort on a bad packet")
("address", po::value<std::string>(&zmq_address)->default_value("localhost"), "VRT ZMQ address")
("port", po::value<uint16_t>(&port)->default_value(50100), "VRT ZMQ port")
("hwm", po::value<int>(&hwm)->default_value(10000), "VRT ZMQ HWM")
;
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
// print the help message
if (vm.count("help")) {
std::cout << boost::format("VRT samples to STRF rffft. %s") % desc << std::endl;
std::cout << std::endl
<< "This application streams data from a VRT stream "
"to rffft.\n"
<< std::endl;
return ~0;
}
bool progress = vm.count("progress") > 0;
bool continue_on_bad_packet = vm.count("continue") > 0;
bool int_second = vm.count("int-second") > 0;
bool useoutput = vm.count("output") > 0;
bool quiet = vm.count("quiet") > 0;
context_type vrt_context;
init_context(&vrt_context);
packet_type vrt_packet;
vrt_packet.channel_filt = 1<<channel;
// ZMQ
void *context = zmq_ctx_new();
void *subscriber = zmq_socket(context, ZMQ_SUB);
int rc = zmq_setsockopt (subscriber, ZMQ_RCVHWM, &hwm, sizeof hwm);
std::string connect_string = "tcp://" + zmq_address + ":" + std::to_string(port);
rc = zmq_connect(subscriber, connect_string.c_str());
assert(rc == 0);
zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, "", 0);
// time keeping
auto start_time = std::chrono::steady_clock::now();
auto stop_time = start_time + std::chrono::milliseconds(int64_t(1000 * total_time));
uint32_t buffer[ZMQ_BUFFER_SIZE];
unsigned long long num_total_samps = 0;
// Track time and samps between updating the BW summary
auto last_update = start_time;
unsigned long long last_update_samps = 0;
bool first_frame = true;
bool start_rx = false;
uint64_t last_fractional_seconds_timestamp = 0;
uint32_t signal_pointer = 0;
// STRF
uint32_t nint_counter = 0;
uint32_t nsub_counter = m; // starting index
while (not stop_signal_called
and (num_requested_samples > num_total_samps or num_requested_samples == 0)
and (total_time == 0.0 or std::chrono::steady_clock::now() <= stop_time)) {
int len = zmq_recv(subscriber, buffer, ZMQ_BUFFER_SIZE, 0);
const auto now = std::chrono::steady_clock::now();
if (not vrt_process(buffer, sizeof(buffer), &vrt_context, &vrt_packet)) {
printf("Not a Vita49 packet?\n");
continue;
}
if (not start_rx and vrt_packet.context) {
vrt_print_context(&vrt_context);
start_rx = true;
samp_rate = vrt_context.sample_rate;
freq = vrt_context.rf_freq;
// Ensure integer number of spectra per subintegration
tint=ceil(fchan*tint)/fchan;
// Number of channels
nchan=(int) (samp_rate/fchan);
// Number of integrations
nint=(int) (tint*(float) samp_rate/(float) nchan);
// Get channel range
if (freqmin>0.0 && freqmax>0.0) {
imin=(int) ((freqmin-freq+0.5*samp_rate)/fchan);
imax=(int) ((freqmax-freq+0.5*samp_rate)/fchan);
if (imin<0 || imin>=nchan || imax<0 || imax>=nchan || imax<=imin) {
fprintf(stderr,"Output frequency range (%.3lf MHz -> %.3lf MHz) incompatible with\ninput settings (%.3lf MHz center frequency, %.3lf MHz sample rate)!\n",freqmin*1e-6,freqmax*1e-6,freq*1e-6,samp_rate*1e-6);
return -1;
}
partial=1;
}
// Dump statistics
printf(" Frequency: %f MHz\n",freq*1e-6);
printf(" Bandwidth: %f MHz\n",samp_rate*1e-6);
printf(" Sampling time: %f us\n",1e6/samp_rate);
printf(" Number of channels: %d\n",nchan);
printf(" Channel size: %.2f Hz\n",samp_rate/(float) nchan);
printf(" Integration time: %.2f s\n",tint);
printf(" Number of averaged spectra: %d\n",nint);
printf(" Number of subints per file: %d\n",nsub);
printf(" Starting index: %d\n",m);
// Allocate
c=(fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex)*nchan);
d=(fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex)*nchan);
cbuf=(char *) malloc(sizeof(char)*2*nchan);
fbuf=(float *) malloc(sizeof(float)*2*nchan);
z=(float *) malloc(sizeof(float)*nchan);
cz=(char *) malloc(sizeof(char)*nchan);
zw=(float *) malloc(sizeof(float)*nchan);
// Compute window
for (i=0;i<nchan;i++)
zw[i]=0.54-0.46*cos(2.0*M_PI*i/(nchan-1));
// Plan
fft=fftwf_plan_dft_1d(nchan,c,d,FFTW_FORWARD,FFTW_ESTIMATE);
}
if (start_rx and vrt_packet.data) {
if (vrt_packet.lost_frame)
if (not continue_on_bad_packet)
break;
if (int_second) {
// check if fractional second has wrapped
if (vrt_packet.fractional_seconds_timestamp > last_fractional_seconds_timestamp ) {
last_fractional_seconds_timestamp = vrt_packet.fractional_seconds_timestamp;
continue;
} else {
int_second = false;
last_update = now;
start_time = now;
stop_time = start_time + std::chrono::milliseconds(int64_t(1000 * total_time));
}
}
if (start_rx and first_frame) {
std::cout << boost::format(
"# First frame: %u samples, %u full secs, %.09f frac secs")
% vrt_packet.num_rx_samps
% vrt_packet.integer_seconds_timestamp
% ((double)vrt_packet.fractional_seconds_timestamp/1e12)
<< std::endl;
first_frame = false;
// STRF Create prefix
start.tv_sec = vrt_packet.integer_seconds_timestamp;
strftime(prefix,30,"%Y-%m-%dT%T",gmtime(&start.tv_sec));
// File name
if (not useoutput) {
sprintf(outfname,"%s/%s_%06d.bin",path.c_str(),prefix,m);
} else {
sprintf(outfname,"%s/%s_%06d.bin",path.c_str(),output.c_str(),m);
}
outfile=fopen(outfname,"w");
}
// int mult = 1;
for (uint32_t i = 0; i < vrt_packet.num_rx_samps; i++) {
if (signal_pointer==0 and nint_counter==0) {
// gettimeofday(&start,0);
uint64_t seconds = vrt_packet.integer_seconds_timestamp;
uint64_t frac_seconds = vrt_packet.fractional_seconds_timestamp;
frac_seconds += (i+1)*1e12/vrt_context.sample_rate;
if (frac_seconds > 1e12) {
frac_seconds -= 1e12;
seconds++;
}
start.tv_sec = seconds;
start.tv_usec = frac_seconds/1e6;
}
int16_t re;
memcpy(&re, (char*)&buffer[vrt_packet.offset+i], 2);
int16_t img;
memcpy(&img, (char*)&buffer[vrt_packet.offset+i]+2, 2);
c[signal_pointer][REAL]=(float)(re/32768.0)*zw[signal_pointer];
c[signal_pointer][IMAG]=(float)(img/32768.0)*zw[signal_pointer]*sign;
// mult *= -1;
signal_pointer++;
if (signal_pointer >= nchan) {
signal_pointer = 0;
// Execute
fftwf_execute(fft);
// Shift/Integrate
for (j=0;j<nchan;j++) {
if (j<nchan/2)
l=j+nchan/2;
else
l=j-nchan/2;
z[l]+=d[j][0]*d[j][0]+d[j][1]*d[j][1];
}
nint_counter++;
if (nint_counter >= nint) {
// Log end time
// gettimeofday(&end,0);
uint64_t seconds = vrt_packet.integer_seconds_timestamp;
uint64_t frac_seconds = vrt_packet.fractional_seconds_timestamp;
frac_seconds += (i+1)*1e12/vrt_context.sample_rate;
if (frac_seconds > 1e12) {
frac_seconds -= 1e12;
seconds++;
}
end.tv_sec = seconds;
end.tv_usec = frac_seconds/1e6;
// Process nint block
// Time stats
length=(end.tv_sec-start.tv_sec)+(end.tv_usec-start.tv_usec)*1e-6;
// Scale
for (i=0;i<nchan;i++)
z[i] *= (float)nuse/(float)nchan;
// Format start time
strftime(tbuf,30,"%Y-%m-%dT%T",gmtime(&start.tv_sec));
sprintf(nfd,"%s.%03ld",tbuf,start.tv_usec/1000);
// Header
if (partial==0) {
if (outformat=='f')
sprintf(header,"HEADER\nUTC_START %s\nFREQ %lf Hz\nBW %lf Hz\nLENGTH %f s\nNCHAN %d\nNSUB %d\nEND\n",nfd,freq,samp_rate,length,nchan,nsub);
else if (outformat=='c')
sprintf(header,"HEADER\nUTC_START %s\nFREQ %lf Hz\nBW %lf Hz\nLENGTH %f s\nNCHAN %d\nNSUB %d\nNBITS 8\nMEAN %e\nRMS %e\nEND\n",nfd,freq,samp_rate,length,nchan,nsub,zavg,zstd);
} else if (partial==1) {
if (outformat=='f')
sprintf(header,"HEADER\nUTC_START %s\nFREQ %lf Hz\nBW %lf Hz\nLENGTH %f s\nNCHAN %d\nNSUB %d\nEND\n",nfd,0.5*(freqmax+freqmin),freqmax-freqmin,length,imax-imin,nsub);
else if (outformat=='c')
sprintf(header,"HEADER\nUTC_START %s\nFREQ %lf Hz\nBW %lf Hz\nLENGTH %f s\nNCHAN %d\nNSUB %d\nNBITS 8\nMEAN %e\nRMS %e\nEND\n",nfd,0.5*(freqmax+freqmin),freqmax-freqmin,length,imax-imin,nsub,zavg,zstd);
}
// Limit output
if (!quiet)
printf("%s %s %f %d\n",outfname,nfd,length,nint_counter);
// Dump file
fwrite(header,sizeof(char),256,outfile);
if (partial==0) {
if (outformat=='f')
fwrite(z,sizeof(float),nchan,outfile);
else if (outformat=='c')
fwrite(cz,sizeof(char),nchan,outfile);
} else if (partial==1) {
if (outformat=='f')
fwrite(&z[imin],sizeof(float),imax-imin,outfile);
else if (outformat=='c')
fwrite(&cz[imin],sizeof(char),imax-imin,outfile);
}
nsub_counter++;
if (nsub_counter >= nsub) {
fclose(outfile);
m++;
if (not useoutput) {
sprintf(outfname,"%s/%s_%06d.bin",path.c_str(),prefix,m);
} else {
sprintf(outfname,"%s/%s_%06d.bin",path.c_str(),output.c_str(),m);
}
outfile=fopen(outfname,"w");
nsub_counter=0;
}
// clear z
for (i=0;i<nchan;i++)
z[i]=0.0;
// reset counter
nint_counter = 0;
}
}
}
num_total_samps += vrt_packet.num_rx_samps;
}
if (progress) {
if (vrt_packet.data)
last_update_samps += vrt_packet.num_rx_samps;
const auto time_since_last_update = now - last_update;
if (time_since_last_update > std::chrono::seconds(1)) {
const double time_since_last_update_s =
std::chrono::duration<double>(time_since_last_update).count();
const double rate = double(last_update_samps) / time_since_last_update_s;
std::cout << "\t" << (rate / 1e6) << " Msps, ";
last_update_samps = 0;
last_update = now;
float sum_i = 0;
uint32_t clip_i = 0;
double datatype_max = 32768.;
for (int i=0; i<vrt_packet.num_rx_samps; i++ ) {
auto sample_i = get_abs_val((std::complex<int16_t>)buffer[vrt_packet.offset+i]);
sum_i += sample_i;
if (sample_i > datatype_max*0.99)
clip_i++;
}
sum_i = sum_i/vrt_packet.num_rx_samps;
std::cout << boost::format("%.0f") % (100.0*log2(sum_i)/log2(datatype_max)) << "% I (";
std::cout << boost::format("%.0f") % ceil(log2(sum_i)+1) << " of ";
std::cout << (int)ceil(log2(datatype_max)+1) << " bits), ";
std::cout << "" << boost::format("%.0f") % (100.0*clip_i/vrt_packet.num_rx_samps) << "% I clip, ";
std::cout << std::endl;
}
}
}
// Close file
fclose(outfile);
// Destroy plan
fftwf_destroy_plan(fft);
// Deallocate
free(cbuf);
free(fbuf);
fftwf_free(c);
fftwf_free(d);
free(z);
free(cz);
free(zw);
return 0;
}