-
Notifications
You must be signed in to change notification settings - Fork 14
/
eigdec.m
59 lines (54 loc) · 1.5 KB
/
eigdec.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function [evals, evec] = eigdec(x, N)
%EIGDEC Sorted eigendecomposition
%
% Description
% EVALS = EIGDEC(X, N computes the largest N eigenvalues of the
% matrix X in descending order. [EVALS, EVEC] = EIGDEC(X, N) also
% computes the corresponding eigenvectors.
%
% See also
% PCA, PPCA
%
% Copyright (c) Ian T Nabney (1996-2001)
if nargout == 1
evals_only = logical(1);
else
evals_only = logical(0);
end
if N ~= round(N) | N < 1 | N > size(x, 2)
error('Number of PCs must be integer, >0, < dim');
end
% Find the eigenvalues of the data covariance matrix
if evals_only
% Use eig function as always more efficient than eigs here
temp_evals = eig(x);
else
% Use eig function unless fraction of eigenvalues required is tiny
if (N/size(x, 2)) > 0.04
fprintf('netlab pca: using eig\n');
[temp_evec, temp_evals] = eig(x);
else
options.disp = 0;
fprintf('netlab pca: using eigs\n');
[temp_evec, temp_evals] = eigs(x, N, 'LM', options);
end
temp_evals = diag(temp_evals);
end
% Eigenvalues nearly always returned in descending order, but just
% to make sure.....
[evals perm] = sort(-temp_evals);
evals = -evals(1:N);
%evec=temp_evec(:,1:N);
if ~evals_only
if evals == temp_evals(1:N)
% Originals were in order
evec = temp_evec(:, 1:N);
return
else
fprintf('netlab pca: sorting evec\n');
% Need to reorder the eigenvectors
for i=1:N
evec(:,i) = temp_evec(:,perm(i));
end
end
end