-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathdata_prep.R
177 lines (144 loc) · 5.85 KB
/
data_prep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
library(mxmaps)
library(fs)
# Download data
# source: https://www.inegi.org.mx/programas/intercensal/2015/default.html#Tabulados
edu_path <- "https://www.inegi.org.mx/contenidos/programas/intercensal/2015/tabulados/06_educacion_"
home_path <- "https://www.inegi.org.mx/contenidos/programas/intercensal/2015/tabulados/12_hogares_"
edu_path_local <- "data/municipios/edu"
use_directory(edu_path_local)
home_path_local <- "data/municipios/home"
use_directory(home_path_local)
download_files_inegi <- function(state_abbr) {
# education
state_edu_path <- paste0(edu_path, state_abbr, ".xls")
download.file(state_edu_path, destfile = fs::path(edu_path_local,
basename(state_edu_path)))
# home
state_home_path <- paste0(home_path, state_abbr, ".xls")
download.file(state_home_path, destfile = fs::path(home_path_local,
basename(state_home_path)))
}
state_abbrs <- df_mxstate %>%
pull(state_abbr_official) %>%
tolower %>%
str_remove(fixed(".")) %>%
str_remove(" ")
state_abbrs[4] <- "cam"
state_abbrs[9] <- "cdmx"
# read and tidy data
read_edu <- function(state_path) {
readxl::read_excel(path = state_path, sheet = 3, skip = 8) %>%
select(state = ...1, municipio = ...2, age_bracket = ...3, est = ...4,
reads_writes = Total...8, prop_male = Hombres...9,
prop_female = Mujeres...10) %>%
filter(!is.na(state), municipio != "Total", est == "Valor") %>%
select(-est)
}
read_edu <- function(state_path) {
df_readwrite <- readxl::read_excel(state_path, sheet = 2, skip = 8) %>%
select(state = ...1, municipio = ...2, est = ...3,
reads_writes = Total...7) %>%
filter(!is.na(state), municipio != "Total", est == "Valor") %>%
select(-est)
df_schoolyears <- readxl::read_excel(state_path, sheet = 5, skip = 9) %>%
select(state = ...1, municipio = ...2, sex = ...3, est = ...4,
avg_schoolyears = ...17) %>%
filter(!is.na(state), municipio != "Total", est == "Valor") %>%
select(-est)
df_edu <- df_schoolyears %>%
spread(sex, avg_schoolyears) %>%
rename(avg_schoolyears_male = Hombres, avg_schoolyears_female = Mujeres,
avg_schoolyears = Total) %>%
inner_join(df_readwrite)
}
edu_paths <- dir_ls(path("data", "municipios", "edu"))
df_edu <- map_df(edu_paths, read_edu)
read_home <- function(state_path) {
readxl::read_excel(path = state_path, sheet = 3, skip = 8) %>%
select(state = ...1, municipio = ...2, sex_lead = ...3, homes = ...4,
family_homes = Total...7, no_family_homes = Total...12,
est = ...5, nuclear = Nuclear, unipersonal = Unipersonal) %>%
filter(!is.na(state), municipio != "Total", sex_lead == "Total",
est == "Valor", homes == "Hogares") %>%
select(-est, -sex_lead, -homes)
}
home_paths <- dir_ls(path("data", "municipios", "home"))
df_home <- map_df(home_paths, read_home)
df_mun_excel <- df_edu %>%
left_join(df_home, by = c("state", "municipio")) %>%
mutate(
state_code = str_sub(state, 1, 2),
municipio_code = str_sub(municipio, 1, 3)
) %>%
select(-state, -municipio)
df_mun <- df_mxmunicipio %>%
left_join(df_mun_excel) %>%
mutate(
prop_indigenous = indigenous / pop,
pop_cat = Hmisc::cut2(pop, g = 6),
is_metro = !is.na(metro_area)
)
fin_2014 <- fin %>%
filter(anio == 2014) %>%
mutate(state_code = str_sub(Clave, 1, 2),
municipio_code = str_sub(Clave, 3, 5)
)
cohesion_rezago <- read_csv("data/cohesion_rezago_social.csv")
df_cohesion_rezago <- cohesion_rezago %>%
mutate(state_code = Cve_Ent,
municipio_code = str_sub(Cve_Mun, 3, 5))
df_mun <- df_mun %>%
left_join(df_cohesion_rezago)
ggplot(df_mun, aes(x = pop, y = Pob_sin_servicios_salud)) +
geom_point() +
scale_x_log10()
ggplot(df_mun, aes(x = Viviendas_sin_drenaje, y = Viviendas_sin_lavadora)) +
geom_point() +
scale_x_log10()
df_oax <- df_mun %>%
filter(state_abbr == "OAX")
ggplot(df_mun, aes(x = Viviendas_sin_lavadora,
y = Viviendas_sin_refrigerador, color = pop_cat,
label = state_abbr)) +
geom_point() +
scale_x_log10()+
scale_y_log10()
plotly::ggplotly()
### Marginación
usethis::use_zip("http://www.conapo.gob.mx/work/models/CONAPO/Marginacion/Datos_Abiertos/Municipio/02_Municipio/Mapa_de_grado_de_marginacion_por_municipio_2015.rar")
ggplot(df_mun, aes(x = avg_schoolyears_male, y = avg_schoolyears_female)) +
geom_point(aes(color = avg_schoolyears_male > avg_schoolyears_female), alpha = 0.5) +
geom_abline(alpha = 0.5) +
facet_wrap(~pop_cat)
ggplot(df_mun, aes(x = pop, y = family_homes)) +
geom_point(alpha = 0.5) +
scale_x_log10() +
scale_y_log10() +
geom_smooth()
ggplot(df_mun, aes(x = avg_schoolyears, y = reads_writes)) +
geom_point(alpha = 0.5) +
ylim(50, 100)
ggplot(df_mun, aes(x = state_abbr_official, y = avg_schoolyears)) +
geom_point(alpha = 0.5)
ggplot(df_mun, aes(x = pop_cat, y = avg_schoolyears)) +
geom_jitter(alpha = 0.5)
ggplot(df_mun, aes(x = pop, y = Inversion_pc, label = state_abbr)) +
geom_jitter(alpha = 0.5) +
scale_y_log10() +
scale_x_log10()
plotly::ggplotly()
usethis::use_zip("https://www.coneval.org.mx/Medicion/MP/Documents/Cohesion_social/Indicadores_cohesion_social_municipio_Mexico_2010-2015.zip")
library(plotly)
df_statecodes <- df_mxstate %>%
select(state_code = region, state_name, state_abbr)
nal_2012 <- nal_2012 %>%
mutate(
state_code = str_c("0", edo_id) %>% str_sub(start = -1L-1)
) %>%
left_join(df_statecodes) %>%
select(state_code, state_name, state_abbr, distrito_loc_17,
casilla:ln_total)
set.seed(938938)
nal_2012_sample <- sample_n(nal_2012, 1500)
ggplot(nal_2012_sample, aes(x = total, y = prd_pt_mc, color = casilla)) +
geom_point()