-
Notifications
You must be signed in to change notification settings - Fork 812
/
Copy pathtrain.py
executable file
·216 lines (180 loc) · 8.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
os.environ['TL_BACKEND'] = 'tensorflow' # Just modify this line, easily switch to any framework! PyTorch will coming soon!
# os.environ['TL_BACKEND'] = 'mindspore'
# os.environ['TL_BACKEND'] = 'paddle'
# os.environ['TL_BACKEND'] = 'torch'
import time
import numpy as np
import tensorlayerx as tlx
from tensorlayerx.dataflow import Dataset, DataLoader
from srgan import SRGAN_g, SRGAN_d
from config import config
from tensorlayerx.vision.transforms import Compose, RandomCrop, Normalize, RandomFlipHorizontal, Resize, HWC2CHW
import vgg
from tensorlayerx.model import TrainOneStep
from tensorlayerx.nn import Module
import cv2
tlx.set_device('GPU')
###====================== HYPER-PARAMETERS ===========================###
batch_size = 8
n_epoch_init = config.TRAIN.n_epoch_init
n_epoch = config.TRAIN.n_epoch
# create folders to save result images and trained models
save_dir = "samples"
tlx.files.exists_or_mkdir(save_dir)
checkpoint_dir = "models"
tlx.files.exists_or_mkdir(checkpoint_dir)
hr_transform = Compose([
RandomCrop(size=(384, 384)),
RandomFlipHorizontal(),
])
nor = Compose([Normalize(mean=(127.5), std=(127.5), data_format='HWC'),
HWC2CHW()])
lr_transform = Resize(size=(96, 96))
train_hr_imgs = tlx.vision.load_images(path=config.TRAIN.hr_img_path, n_threads = 32)
class TrainData(Dataset):
def __init__(self, hr_trans=hr_transform, lr_trans=lr_transform):
self.train_hr_imgs = train_hr_imgs
self.hr_trans = hr_trans
self.lr_trans = lr_trans
def __getitem__(self, index):
img = self.train_hr_imgs[index]
hr_patch = self.hr_trans(img)
lr_patch = self.lr_trans(hr_patch)
return nor(lr_patch), nor(hr_patch)
def __len__(self):
return len(self.train_hr_imgs)
class WithLoss_init(Module):
def __init__(self, G_net, loss_fn):
super(WithLoss_init, self).__init__()
self.net = G_net
self.loss_fn = loss_fn
def forward(self, lr, hr):
out = self.net(lr)
loss = self.loss_fn(out, hr)
return loss
class WithLoss_D(Module):
def __init__(self, D_net, G_net, loss_fn):
super(WithLoss_D, self).__init__()
self.D_net = D_net
self.G_net = G_net
self.loss_fn = loss_fn
def forward(self, lr, hr):
fake_patchs = self.G_net(lr)
logits_fake = self.D_net(fake_patchs)
logits_real = self.D_net(hr)
d_loss1 = self.loss_fn(logits_real, tlx.ones_like(logits_real))
d_loss1 = tlx.ops.reduce_mean(d_loss1)
d_loss2 = self.loss_fn(logits_fake, tlx.zeros_like(logits_fake))
d_loss2 = tlx.ops.reduce_mean(d_loss2)
d_loss = d_loss1 + d_loss2
return d_loss
class WithLoss_G(Module):
def __init__(self, D_net, G_net, vgg, loss_fn1, loss_fn2):
super(WithLoss_G, self).__init__()
self.D_net = D_net
self.G_net = G_net
self.vgg = vgg
self.loss_fn1 = loss_fn1
self.loss_fn2 = loss_fn2
def forward(self, lr, hr):
fake_patchs = self.G_net(lr)
logits_fake = self.D_net(fake_patchs)
feature_fake = self.vgg((fake_patchs + 1) / 2.)
feature_real = self.vgg((hr + 1) / 2.)
g_gan_loss = 1e-3 * self.loss_fn1(logits_fake, tlx.ones_like(logits_fake))
g_gan_loss = tlx.ops.reduce_mean(g_gan_loss)
mse_loss = self.loss_fn2(fake_patchs, hr)
vgg_loss = 2e-6 * self.loss_fn2(feature_fake, feature_real)
g_loss = mse_loss + vgg_loss + g_gan_loss
return g_loss
G = SRGAN_g()
D = SRGAN_d()
VGG = vgg.VGG19(pretrained=True, end_with='pool4', mode='dynamic')
# automatic init layers weights shape with input tensor.
# Calculating and filling 'in_channels' of each layer is a very troublesome thing.
# So, just use 'init_build' with input shape. 'in_channels' of each layer will be automaticlly set.
G.init_build(tlx.nn.Input(shape=(8, 3, 96, 96)))
D.init_build(tlx.nn.Input(shape=(8, 3, 384, 384)))
def train():
G.set_train()
D.set_train()
VGG.set_eval()
train_ds = TrainData()
train_ds_img_nums = len(train_ds)
train_ds = DataLoader(train_ds, batch_size=batch_size, shuffle=True, drop_last=True)
lr_v = tlx.optimizers.lr.StepDecay(learning_rate=0.05, step_size=1000, gamma=0.1, last_epoch=-1, verbose=True)
g_optimizer_init = tlx.optimizers.Momentum(lr_v, 0.9)
g_optimizer = tlx.optimizers.Momentum(lr_v, 0.9)
d_optimizer = tlx.optimizers.Momentum(lr_v, 0.9)
g_weights = G.trainable_weights
d_weights = D.trainable_weights
net_with_loss_init = WithLoss_init(G, loss_fn=tlx.losses.mean_squared_error)
net_with_loss_D = WithLoss_D(D_net=D, G_net=G, loss_fn=tlx.losses.sigmoid_cross_entropy)
net_with_loss_G = WithLoss_G(D_net=D, G_net=G, vgg=VGG, loss_fn1=tlx.losses.sigmoid_cross_entropy,
loss_fn2=tlx.losses.mean_squared_error)
trainforinit = TrainOneStep(net_with_loss_init, optimizer=g_optimizer_init, train_weights=g_weights)
trainforG = TrainOneStep(net_with_loss_G, optimizer=g_optimizer, train_weights=g_weights)
trainforD = TrainOneStep(net_with_loss_D, optimizer=d_optimizer, train_weights=d_weights)
# initialize learning (G)
n_step_epoch = round(train_ds_img_nums // batch_size)
for epoch in range(n_epoch_init):
for step, (lr_patch, hr_patch) in enumerate(train_ds):
step_time = time.time()
loss = trainforinit(lr_patch, hr_patch)
print("Epoch: [{}/{}] step: [{}/{}] time: {:.3f}s, mse: {:.3f} ".format(
epoch, n_epoch_init, step, n_step_epoch, time.time() - step_time, float(loss)))
# adversarial learning (G, D)
n_step_epoch = round(train_ds_img_nums // batch_size)
for epoch in range(n_epoch):
for step, (lr_patch, hr_patch) in enumerate(train_ds):
step_time = time.time()
loss_g = trainforG(lr_patch, hr_patch)
loss_d = trainforD(lr_patch, hr_patch)
print(
"Epoch: [{}/{}] step: [{}/{}] time: {:.3f}s, g_loss:{:.3f}, d_loss: {:.3f}".format(
epoch, n_epoch, step, n_step_epoch, time.time() - step_time, float(loss_g), float(loss_d)))
# dynamic learning rate update
lr_v.step()
if (epoch != 0) and (epoch % 10 == 0):
G.save_weights(os.path.join(checkpoint_dir, 'g.npz'), format='npz_dict')
D.save_weights(os.path.join(checkpoint_dir, 'd.npz'), format='npz_dict')
def evaluate():
###====================== PRE-LOAD DATA ===========================###
valid_hr_imgs = tlx.vision.load_images(path=config.VALID.hr_img_path )
###========================LOAD WEIGHTS ============================###
G.load_weights(os.path.join(checkpoint_dir, 'g.npz'), format='npz_dict')
G.set_eval()
imid = 0 # 0: 企鹅 81: 蝴蝶 53: 鸟 64: 古堡
valid_hr_img = valid_hr_imgs[imid]
valid_lr_img = np.asarray(valid_hr_img)
hr_size1 = [valid_lr_img.shape[0], valid_lr_img.shape[1]]
valid_lr_img = cv2.resize(valid_lr_img, dsize=(hr_size1[1] // 4, hr_size1[0] // 4))
valid_lr_img_tensor = (valid_lr_img / 127.5) - 1 # rescale to [-1, 1]
valid_lr_img_tensor = np.asarray(valid_lr_img_tensor, dtype=np.float32)
valid_lr_img_tensor = np.transpose(valid_lr_img_tensor,axes=[2, 0, 1])
valid_lr_img_tensor = valid_lr_img_tensor[np.newaxis, :, :, :]
valid_lr_img_tensor= tlx.ops.convert_to_tensor(valid_lr_img_tensor)
size = [valid_lr_img.shape[0], valid_lr_img.shape[1]]
out = tlx.ops.convert_to_numpy(G(valid_lr_img_tensor))
out = np.asarray((out + 1) * 127.5, dtype=np.uint8)
out = np.transpose(out[0], axes=[1, 2, 0])
print("LR size: %s / generated HR size: %s" % (size, out.shape)) # LR size: (339, 510, 3) / gen HR size: (1, 1356, 2040, 3)
print("[*] save images")
tlx.vision.save_image(out, file_name='valid_gen.png', path=save_dir)
tlx.vision.save_image(valid_lr_img, file_name='valid_lr.png', path=save_dir)
tlx.vision.save_image(valid_hr_img, file_name='valid_hr.png', path=save_dir)
out_bicu = cv2.resize(valid_lr_img, dsize = [size[1] * 4, size[0] * 4], interpolation = cv2.INTER_CUBIC)
tlx.vision.save_image(out_bicu, file_name='valid_hr_cubic.png', path=save_dir)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='train', help='train, eval')
args = parser.parse_args()
tlx.global_flag['mode'] = args.mode
if tlx.global_flag['mode'] == 'train':
train()
elif tlx.global_flag['mode'] == 'eval':
evaluate()
else:
raise Exception("Unknow --mode")