-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathmain.py
210 lines (162 loc) · 6.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import sys
import time
import torch
import numpy as np
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
import config
import myutils
from loss import Loss
from torch.utils.data import DataLoader
def load_checkpoint(args, model, optimizer , path):
print("loading checkpoint %s" % path)
checkpoint = torch.load(path)
args.start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr = checkpoint.get("lr" , args.lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
##### Parse CmdLine Arguments #####
args, unparsed = config.get_args()
cwd = os.getcwd()
print(args)
save_loc = os.path.join(args.checkpoint_dir , "saved_models_final" , args.dataset , args.exp_name)
if not os.path.exists(save_loc):
os.makedirs(save_loc)
opts_file = os.path.join(save_loc , "opts.txt")
with open(opts_file , "w") as fh:
fh.write(str(args))
##### TensorBoard & Misc Setup #####
writer_loc = os.path.join(args.checkpoint_dir , 'tensorboard_logs_%s_final/%s' % (args.dataset , args.exp_name))
writer = SummaryWriter(writer_loc)
device = torch.device('cuda' if args.cuda else 'cpu')
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(args.random_seed)
if args.cuda:
torch.cuda.manual_seed(args.random_seed)
if args.dataset == "vimeo90K_septuplet":
from dataset.vimeo90k_septuplet import get_loader
train_loader = get_loader('train', args.data_root, args.batch_size, shuffle=True, num_workers=args.num_workers)
test_loader = get_loader('test', args.data_root, args.test_batch_size, shuffle=False, num_workers=args.num_workers)
elif args.dataset == "gopro":
from dataset.GoPro import get_loader
train_loader = get_loader(args.data_root, args.batch_size, shuffle=True, num_workers=args.num_workers, test_mode=False, interFrames=args.n_outputs, n_inputs=args.nbr_frame)
test_loader = get_loader(args.data_root, args.batch_size, shuffle=False, num_workers=args.num_workers, test_mode=True, interFrames=args.n_outputs, n_inputs=args.nbr_frame)
else:
raise NotImplementedError
from model.FLAVR_arch import UNet_3D_3D
print("Building model: %s"%args.model.lower())
model = UNet_3D_3D(args.model.lower() , n_inputs=args.nbr_frame, n_outputs=args.n_outputs, joinType=args.joinType, upmode=args.upmode)
model = torch.nn.DataParallel(model).to(device)
##### Define Loss & Optimizer #####
criterion = Loss(args)
## ToDo: Different learning rate schemes for different parameters
from torch.optim import Adam
optimizer = Adam(model.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True)
def train(args, epoch):
losses, psnrs, ssims = myutils.init_meters(args.loss)
model.train()
criterion.train()
t = time.time()
for i, (images, gt_image) in enumerate(train_loader):
# Build input batch
images = [img_.cuda() for img_ in images]
gt = [gt_.cuda() for gt_ in gt_image]
# Forward
optimizer.zero_grad()
out = model(images)
out = torch.cat(out)
gt = torch.cat(gt)
loss, loss_specific = criterion(out, gt)
# Save loss values
for k, v in losses.items():
if k != 'total':
v.update(loss_specific[k].item())
losses['total'].update(loss.item())
loss.backward()
optimizer.step()
# Calc metrics & print logs
if i % args.log_iter == 0:
myutils.eval_metrics(out, gt, psnrs, ssims)
print('Train Epoch: {} [{}/{}]\tLoss: {:.6f}\tPSNR: {:.4f}'.format(
epoch, i, len(train_loader), losses['total'].avg, psnrs.avg , flush=True))
# Log to TensorBoard
timestep = epoch * len(train_loader) + i
writer.add_scalar('Loss/train', loss.data.item(), timestep)
writer.add_scalar('PSNR/train', psnrs.avg, timestep)
writer.add_scalar('SSIM/train', ssims.avg, timestep)
writer.add_scalar('lr', optimizer.param_groups[-1]['lr'], timestep)
# Reset metrics
losses, psnrs, ssims = myutils.init_meters(args.loss)
t = time.time()
def test(args, epoch):
print('Evaluating for epoch = %d' % epoch)
losses, psnrs, ssims = myutils.init_meters(args.loss)
model.eval()
criterion.eval()
t = time.time()
with torch.no_grad():
for i, (images, gt_image) in enumerate(tqdm(test_loader)):
images = [img_.cuda() for img_ in images]
gt = [gt_.cuda() for gt_ in gt_image]
out = model(images) ## images is a list of neighboring frames
out = torch.cat(out)
gt = torch.cat(gt)
# Save loss values
loss, loss_specific = criterion(out, gt)
for k, v in losses.items():
if k != 'total':
v.update(loss_specific[k].item())
losses['total'].update(loss.item())
# Evaluate metrics
myutils.eval_metrics(out, gt, psnrs, ssims)
# Print progress
print("Loss: %f, PSNR: %f, SSIM: %f\n" %
(losses['total'].avg, psnrs.avg, ssims.avg))
# Save psnr & ssim
save_fn = os.path.join(save_loc, 'results.txt')
with open(save_fn, 'a') as f:
f.write('For epoch=%d\t' % epoch)
f.write("PSNR: %f, SSIM: %f\n" %
(psnrs.avg, ssims.avg))
# Log to TensorBoard
timestep = epoch +1
writer.add_scalar('Loss/test', loss.data.item(), timestep)
writer.add_scalar('PSNR/test', psnrs.avg, timestep)
writer.add_scalar('SSIM/test', ssims.avg, timestep)
return losses['total'].avg, psnrs.avg, ssims.avg
""" Entry Point """
def main(args):
if args.pretrained:
## For low data, it is better to load from a supervised pretrained model
loadStateDict = torch.load(args.pretrained)['state_dict']
modelStateDict = model.state_dict()
for k,v in loadStateDict.items():
if v.shape == modelStateDict[k].shape:
print("Loading " , k)
modelStateDict[k] = v
else:
print("Not loading" , k)
model.load_state_dict(modelStateDict)
best_psnr = 0
for epoch in range(args.start_epoch, args.max_epoch):
train(args, epoch)
test_loss, psnr, _ = test(args, epoch)
# save checkpoint
is_best = psnr > best_psnr
best_psnr = max(psnr, best_psnr)
myutils.save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_psnr': best_psnr,
'lr' : optimizer.param_groups[-1]['lr']
}, save_loc, is_best, args.exp_name)
# update optimizer policy
scheduler.step(test_loss)
if __name__ == "__main__":
main(args)