-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
97 lines (85 loc) · 3.41 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import torch
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.network as module_arch
from parse_config import ConfigParser
import numpy as np
from utils.util import decode_segmap
import matplotlib.pyplot as plt
from data_loader import CityScapesDataLoader
import cv2
from torch.nn import functional as F
from tqdm import tqdm
color_map = [(128, 64, 128),
(244, 35, 232),
(70, 70, 70),
(102, 102, 156),
(190, 153, 153),
(153, 153, 153),
(250, 170, 30),
(220, 220, 0),
(107, 142, 35),
(152, 251, 152),
(70, 130, 180),
(220, 20, 60),
(255, 0, 0),
(0, 0, 142),
(0, 0, 70),
(0, 60, 100),
(0, 80, 100),
(0, 0, 230),
(119, 11, 32)]
def main(config, img, anno, name):
model = config.init_obj('arch', module_arch)
criterion = config.init_obj('loss', module_loss)
metrics = [getattr(module_metric, met) for met in config['metrics']]
checkpoint = torch.load(config.resume, map_location=torch.device('cpu'))
state_dict = checkpoint['state_dict']
model.load_state_dict(state_dict)
# prepare model for testing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
# size = anno.size()
img = img.to(device)
out_put = model(img)
out_put = F.interpolate(
input=out_put, size=(1024, 2048),
mode='bilinear', align_corners=True
)
# for i, metric in enumerate(metrics):
# print('{}: {:.6f}'.format(metric.__name__, metric(out_put, anno)))
out_put = torch.argmax(out_put, dim=1)
for jj in range(img.size()[0]):
img = test_img.cpu().numpy()
show_output = out_put.cpu().numpy()
gt = anno.numpy()
tmp = np.array(show_output[jj]).astype(np.uint8)
tmp1 = np.array(gt[jj]).astype(np.uint8)
ignore_index = np.where(tmp1 == 255)
tmp[ignore_index] = 255
sv_img = np.zeros((1024, 2048, 3))
for i, color in enumerate(color_map):
for j in range(3):
sv_img[:, :, j][tmp == i] = color_map[i][j]
true_name = name[0].split('/')[-1]
cv2.imwrite('/home/tanpv/workspace/Segment_SDC/out_images/' + 'Unet_' + true_name, sv_img)
if __name__ == '__main__':
data_dir = 'CityScapes'
test_data_loader = CityScapesDataLoader(data_dir=data_dir, phase='test', batch_size=1, shuffle=True)
# test_img, anno, name = next(iter(test_data_loader))
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args.add_argument('-n', '--name', default=None, type=str,
help='name of training session ')
config = ConfigParser.from_args(args)
for test_img, anno, name in tqdm(test_data_loader, total=len(test_data_loader)):
main(config, test_img, anno, name)