-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFitting_Routine.py
160 lines (136 loc) · 5.16 KB
/
Fitting_Routine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import logging
import pyomo.environ as pyo
import numpy as np
import idaes.logger as idaeslog
from idaes.core.util.model_statistics import degrees_of_freedom
from idaes.core.solvers import get_solver
import idaes.core.util.scaling as iscale
from idaes.models_extra.column_models.properties import ModularPropertiesInherentReactionsInitializer
from idaes.models.properties.modular_properties.base.generic_property import (
GenericParameterBlock,
)
from Create_Param_Table import create_param_table
from Uncertainty_Analysis import uncertainty_analysis
from Parameter_Setup import get_estimated_params, setup_param_scaling
from eNRTL_property_setup import get_prop_dict
from Load_Datasets import load_datasets
from Plot_Fit import plot_fit
# %% Model Setup
optarg = {
# 'bound_push' : 1e-22,
'nlp_scaling_method': 'user-scaling',
'linear_solver': 'ma57',
'OF_ma57_automatic_scaling': 'yes',
'max_iter': 300,
'tol': 1e-8,
'constr_viol_tol': 1e-8,
'halt_on_ampl_error': 'no',
# 'mu_strategy': 'monotone',
}
param_dic = {'rxn_coeffs': [
'1',
'2',
'3',
'4',
], 'molecules': [
'H2O',
# 'MEA',
# 'CO2',
], 'cations': [
'MEAH^+',
], 'anions': [
'MEACOO^-',
'HCO3^-',
], 'parameters': [
'tau_A',
'tau_B',
# 'tau_alpha',
], 'interactions': [
'm-ca',
'ca-m',
# 'm1-m2',
# 'm2-m1',
# "ca1-ca2",
# "ca2-ca1",
],
}
species_dic = {
'components': ['H2O', 'MEA', 'CO2'],
'ions': ['MEAH^+', 'MEACOO^-', 'HCO3^-'],
}
system_fit_dic = {
'temperature': [40.0, 60.0, 80.0, 100.0, 120.0],
'pressure': 200000,
'amine_weight_percent': .3,
'loading_constraints': [.1, .6],
}
column_names = {
'temperature': 'temperature',
'loading': 'CO2_loading',
'amine_concentration': 'MEA_weight_fraction',
'pressure': 'total_pressure',
'CO2_pressure': 'CO2_pressure',
'heat_of_absorption': 'dH_abs'
}
param_table = True
def get_mole_fraction(CO2_loading, amine_concentration):
MW_MEA = 61.084
MW_H2O = 18.02
x_MEA_unloaded = amine_concentration / (MW_MEA / MW_H2O + amine_concentration * (1 - MW_MEA / MW_H2O))
x_H2O_unloaded = 1 - x_MEA_unloaded
n_MEA = 100 * x_MEA_unloaded
n_H2O = 100 * x_H2O_unloaded
n_CO2 = n_MEA * CO2_loading
n_tot = n_MEA + n_H2O + n_CO2
x_CO2, x_MEA, x_H2O = n_CO2 / n_tot, n_MEA / n_tot, n_H2O / n_tot
mole_frac = {
'CO2': np.float32(x_CO2),
'MEA': np.float32(x_MEA),
'H2O': np.float32(x_H2O),
'n_T': np.float32(n_tot),
}
return mole_frac
if __name__ == "__main__":
logging.getLogger('pyomo.repn.plugins.nl_writer').setLevel(logging.ERROR)
init_outlevel = idaeslog.WARNING
m = pyo.ConcreteModel()
config = get_prop_dict(species_dic['components'])
params = m.params = GenericParameterBlock(**config)
setup_param_scaling(m)
# %% Dataset Implementation
obj_expr = 0
dataset_dir = r"data\data_sets_to_load"
obj_expr, dfs, param_block_names = load_datasets(m, obj_expr, dataset_dir, species_dic, get_mole_fraction, column_names,
exclude_list=['Xu', 'Bottinger'])
# %% Model Initializing and Solving
iscale.calculate_scaling_factors(m)
print(f"DOF: {degrees_of_freedom(m)}")
state_init = ModularPropertiesInherentReactionsInitializer(solver="ipopt",
solver_options=optarg,
output_level=init_outlevel)
for param_block_name in param_block_names:
param_block = getattr(m, param_block_name)
state_init.initialize(param_block)
iscale.calculate_scaling_factors(m)
df_unfit = get_estimated_params(m, param_dic)
var_objects = df_unfit['Object'].to_numpy()
reg = .01
obj_expr += sum([reg * .5 * ((var - var.value) * iscale.get_scaling_factor(var)) ** 2 for var in var_objects])
m.obj = pyo.Objective(expr=obj_expr)
m_scaled = pyo.TransformationFactory('core.scale_model').create_using(m, rename=False)
m_scaled.ipopt_zL_out = pyo.Suffix(direction=pyo.Suffix.IMPORT)
m_scaled.ipopt_zU_out = pyo.Suffix(direction=pyo.Suffix.IMPORT)
var_objects_scaled = [m_scaled.find_component(var.name) for var in var_objects]
for var in var_objects_scaled:
var.unfix()
optarg.pop("nlp_scaling_method", None) # Scaled model doesn't need user scaling
solver = get_solver("ipopt", options=optarg)
solver.solve(m_scaled, tee=False)
pyo.TransformationFactory('core.scale_model').propagate_solution(m_scaled, m)
# %% Uncertainty Analysis
df_fit, W_value = uncertainty_analysis(m_scaled, df_unfit, var_objects, var_objects_scaled)
if param_table:
create_param_table(df_fit, title=f"Obj: {pyo.value(m.obj): .4f} - H: {W_value: .4f}")
obj_value = pyo.value(m.obj)
# %% Plotting
plot_fit(df_fit, system_fit_dic, species_dic, get_mole_fraction, obj_value, optarg, config, dataset_dir, column_names)