You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello @tamerthamoqa,
I am using this repo on a custom dataset, but I encountered some weird behaviour, every other metric constantly changes during epochs, but Precision always stays the same at 0.5000+-0.5000. I have also defined a custom validation dataset for which I generated an equal amount of positive and negative pairs in total consisting of 422 pairs, here's an example on one of the epochs:
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:22<00:00, 4.45it/s]
Epoch 137: Number of valid training triplets in epoch: 4
Validating on LFW! ...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 2.65it/s]
Accuracy on LFW: 0.8818+-0.0417 Precision 0.5000+-0.5000 Recall 0.4364+-0.4368 ROC Area Under Curve: 0.1977 Best distance threshold: 1.16+-0.03 TAR: 0.2068+-0.2145 @ FAR: 0.0000
I tried reducing the range of threshold from the default to:
thresholds_roc = np.arange(0.5, 0.8, 0.1)
thresholds_val = np.arange(0.5, 0.8, 0.1)
But the precision stays the same. My question is what's going on with the precision calculations as far as I have reviewed the calculation logic checks out?
Thank you in advance.
The text was updated successfully, but these errors were encountered:
Hello @tamerthamoqa,
I am using this repo on a custom dataset, but I encountered some weird behaviour, every other metric constantly changes during epochs, but Precision always stays the same at 0.5000+-0.5000. I have also defined a custom validation dataset for which I generated an equal amount of positive and negative pairs in total consisting of 422 pairs, here's an example on one of the epochs:
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [00:22<00:00, 4.45it/s]
Epoch 137: Number of valid training triplets in epoch: 4
Validating on LFW! ...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 2.65it/s]
Accuracy on LFW: 0.8818+-0.0417 Precision 0.5000+-0.5000 Recall 0.4364+-0.4368 ROC Area Under Curve: 0.1977 Best distance threshold: 1.16+-0.03 TAR: 0.2068+-0.2145 @ FAR: 0.0000
I tried reducing the range of threshold from the default to:
thresholds_roc = np.arange(0.5, 0.8, 0.1)
thresholds_val = np.arange(0.5, 0.8, 0.1)
But the precision stays the same. My question is what's going on with the precision calculations as far as I have reviewed the calculation logic checks out?
Thank you in advance.
The text was updated successfully, but these errors were encountered: