-
Notifications
You must be signed in to change notification settings - Fork 1
/
hist.py
538 lines (459 loc) · 16.2 KB
/
hist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
from __future__ import division, print_function, absolute_import
import numpy as np
from matplotlib import pyplot as plt
from .stats import binstats, binquantile, generate_bins
from .helper import errorbar2
__all__ = ['pcolorshow', 'hist_stats', 'hist2d_stats', 'steps',
'cdfsteps', 'pdfsteps', 'compare', 'compare_violin',
'compare_median']
def _pcolorshow_args(x, m):
"""Helper function for `pcolorshow`.
Check the shape of input and return its range.
"""
if x.ndim != 1:
raise ValueError("unexpected array dimensions")
elif x.size > 1:
dx = x[1] - x[0]
else:
dx = 1
if not np.allclose(np.diff(x), dx):
raise ValueError("the bin size must be equal.")
if x.size == m:
return np.min(x) - 0.5 * dx, np.max(x) + 0.5 * dx
elif x.size == m + 1:
return np.min(x), np.max(x)
else:
raise ValueError("unexpected array shape")
def pcolorshow(*args, **kwargs):
"""pcolorshow([x, y], z, interpolation='nearest', **kwargs)
similar to pcolormesh but using `imshow` as backend.
It renders faster than `pcolor(mesh)` and supports more interpolation
schemes, but only works with equal bins.
Parameters
----------
x, y : array like, optional
Coordinates of bins.
z :
The color array. z should be in shape (ny, nx) or (ny + 1, nx + 1)
when x, y are given.
interpolation : string, optional
Acceptable values are 'nearest', 'bilinear', 'bicubic',
'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser',
'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc',
'lanczos'
vmin, vmax : scalar, optional, default: None
`vmin` and `vmax` are used in conjunction with norm to normalize
luminance data. Note if you pass a `norm` instance, your
settings for `vmin` and `vmax` will be ignored.
Example
-------
a = np.arange(10)
pcolorshow(a, 0.5, a)
"""
z = np.atleast_2d(args[-1])
n, m = z.shape
if len(args) == 1:
xmin, xmax = 0, m
ymin, ymax = 0, n
elif len(args) == 3:
x, y = np.atleast_1d(*args[:2])
xmin, xmax = _pcolorshow_args(x, m)
ymin, ymax = _pcolorshow_args(y, n)
else:
raise ValueError("should input `x, y, z` or `z`")
kwargs.setdefault("origin", 'lower')
kwargs.setdefault("aspect", plt.gca().get_aspect())
kwargs.setdefault("extent", (xmin, xmax, ymin, ymax))
kwargs.setdefault('interpolation', 'nearest')
return plt.imshow(z, **kwargs)
def hist_stats(x, y, bins=10, func=np.mean, nmin=1, style="plot", **kwargs):
"""
Similar to `plt.hist` but show the binned statistics instead of
simple number count.
Parameters
----------
x, y, bins, func, nmin :
See doc of `binstats`.
style : {'plot' | 'scatter' | 'step'}
Style of line.
kwargs :
Parameters for style above.
Example
-------
import numpy as np
n = 10000
x, s = np.random.randn(2, n)
y = x * 2 + s / 2
hist_stats(x, y, func=lambda x:np.percentile(x, [50, 15, 85]),
ls=['-', '--', '--'], lw=[2, 1, 1], color=['k', 'b', 'b'])
"""
stats, edges, count = binstats(x, y, bins=bins, func=func, nmin=nmin)
stats = np.atleast_2d(stats)
assert len(edges) == 1
assert stats.ndim == 2
style_dict = {'plot': plt.plot,
'scatter': plt.scatter,
'step': steps}
plot = style_dict[style]
if style == 'step':
X = edges[0]
else:
X = (edges[0][:-1] + edges[0][1:]) / 2.
lines = []
for i, Y in enumerate(stats):
args = {k: (v if np.isscalar(v) else v[i])
for k, v in kwargs.items()}
lines += plot(X, Y, **args)
return lines
def hist2d_stats(x, y, z, bins=10, func=np.mean, nmin=1, **kwargs):
"""
Similar to `plt.hist2d` but show the binned statistics instead of
simple number count.
Parameters
----------
x, y :
Coordinates of points.
z :
Data for statistics.
bins, func, nmin :
See doc of `binstats`.
kwargs :
`pcolormesh` parameters
"""
stats, edges, count = binstats([x, y], z, bins=bins, func=func, nmin=nmin)
assert len(edges) == 2
assert stats.ndim == 2
(X, Y), Z = edges, stats.T
mask = ~np.isfinite(Z)
Z = np.ma.array(Z, mask=mask)
kwargs.setdefault('vmin', Z.min())
kwargs.setdefault('vmax', Z.max())
return plt.pcolormesh(X, Y, Z, **kwargs)
def steps(x, y, *args, **kwargs):
"""steps(x, y, *args, style='line', bottom=0, guess=True,
orientation='vertical', **kwargs)
Make a step plot.
The interval from x[i] to x[i+1] has level y[i]
This function is useful for show the results of np.histogram.
Parameters
----------
x, y : 1-D sequences
Data to plot.
- If len(x) == len(y) + 1
y keeps y[i] at interval from x[i] to x[i+1].
- If len(x) == len(y)
y jumps from y[i] to y[i+1] at (x[i] + x[i+1])/2.
style : ['default' | 'step' | 'filled' | 'bar' | 'line'], optional
The type of steps to draw.
- 'default': step line plot
- 'step': step line with vertical line at borders.
- 'filled': filled step line plot
- 'bar': traditional bar-type histogram
- 'line': polygonal line
See the example below for a visual explanation.
bottom : float
The bottom baseline of the plot.
guess : bool
Option works only for case len(x) == len(y).
If True, the marginal bin edges of x will be guessed
with assuming equal bin. Otherwise x[0], x[-1] are used.
orientation : ['horizontal' | 'vertical'], optional
Orientation.
args, kwargs :
Same as `plt.plot` if `style` in ['default', 'step', 'line'], or
same as `plt.fill` if `style` in ['filled', 'bar'].
Example
-------
np.random.seed(1)
a = np.random.rand(50)
b = np.linspace(0.1, 0.9, 6)
h, bins = np.histogram(a, b)
for i, style in enumerate(['default', 'step', 'filled', 'bar', 'line']):
steps(bins + i, h, style=style, lw=2, bottom=1)
plt.text(i + 0.5, 14, style)
plt.xlim(0, 5)
plt.ylim(-1, 16)
"""
style = kwargs.pop('style', 'default')
bottom = kwargs.pop('bottom', 0)
guess = kwargs.pop('guess', True)
orientation = kwargs.pop('orientation', 'vertical')
# a workaround for case 'line'
if style == 'line':
guess = True
m, n = len(x), len(y)
if m == n:
if guess and m >= 2:
xmin, xmax = x[0] * 1.5 - x[1] * 0.5, x[-1] * 1.5 - x[-2] * 0.5
else:
xmin, xmax = x[0], x[-1]
x = np.hstack([xmin, (x[1:] + x[:-1]) * 0.5, xmax])
elif m == n + 1:
pass
else:
raise ValueError("x, y shape not matched.")
if style == 'default':
x, y = np.repeat(x, 2), np.repeat(y, 2)
x = x[1:-1]
elif style in ['step', 'filled']:
x, y = np.repeat(x, 2), np.repeat(y, 2)
y = np.hstack([bottom, y, bottom])
elif style == 'bar':
x, y = np.repeat(x, 3), np.repeat(y, 3)
x, y = x[1:-1], np.hstack([y, bottom])
y[::3] = bottom
elif style == 'line':
x = (x[1:] + x[:-1]) / 2
else:
raise ValueError("invalid style: %s" % style)
if orientation == 'vertical':
pass
elif orientation == 'horizontal':
x, y = y, x
else:
raise ValueError("orientation must be `vertical` or `horizontal`")
if style in ['default', 'step', 'line']:
return plt.plot(x, y, *args, **kwargs)
else:
return plt.fill(x, y, *args, **kwargs)
def cdfsteps(x, *args, **kwargs):
"""cdfsteps(x, *args, weights=None, side='left',
normed=True, sorted=Fasle, **kwargs)
Parameters
----------
x:
Input.
weights : array, Optional
Weighting.
side: ['left' | 'right']
'left': ascending steps,
'right' : descending steps.
normed: bool
If normalize to 1.
sorted: bool
Set True, if x follows increasing order.
Otherwise, sorting will be performed to x.
"""
weights = kwargs.pop('weights', None)
side = kwargs.pop('side', 'left')
normed = kwargs.pop('normed', True)
sorted = kwargs.pop('sorted', False)
assert side in ['right', 'left']
x = np.asarray(x).ravel()
if not sorted:
ix = np.argsort(x)
x = x[ix]
if weights is not None:
weights = weights[ix]
if weights is None:
h = np.arange(0., x.size + 1.)
else:
h = np.hstack([0., np.cumsum(weights)])
if normed:
h = h / h[-1]
if side == 'right':
h = h[::-1]
x = np.hstack([x[0], x, x[-1]])
return steps(x, h, *args, **kwargs)
def pdfsteps(x, *args, **kwds):
sorted = kwds.pop('sorted', False)
x = np.asarray(x).ravel()
if not sorted:
x = np.sort(x)
h = 1. / x.size / np.diff(x)
return steps(x, h, *args, border=True, **kwds)
def _expand_args(args, i_idx, j_key):
"""Helper function for `compare`.
Expand the args for given index.
"""
res = {}
for k, v in args.items():
if np.isscalar(v):
res[k] = v
elif isinstance(v, dict):
res[k] = v[j_key]
else:
res[k] = v[i_idx]
return res
def compare(x, y, xbins=None, ybins=None, weights=None, nmin=3, nanas=None,
dots=[0], ebar=[], line=[0, 1, 2], fill=[], zorder=2,
dots_args={}, ebar_args={}, fill_args={}, **line_args):
"""Show the correlation between two data sets.
Plot the median and 1, 2 sigma regions of the conditional distribution
p(y|x) for given x bins or p(x|y) for given y bins.
Parameters
----------
x, y : 1-D sequences
Data sets to compare.
xbins, ybins : int or 1-D sequences
Binning edges. Only one of them can be given.
weights :
Weights of data.
nmin, nanas :
See doc of `binquantile`.
Example
-------
import numpy as np
n = 10000
x, s = np.random.randn(2, n)
y = x * 2 + s / 2
compare(x, y, 10, dots=0, line=[0, 1], fill=1, ebar=1)
"""
# format inputs
x, y = np.asarray(x).ravel(), np.asarray(y).ravel()
if weights is not None:
weights = np.asarray(weights).ravel()
if ybins is None:
if xbins is None:
xbins = 10
w, z, bins = x, y, xbins
else:
if xbins is not None:
raise ValueError("Only one of 'xbins' or 'ybins' can be given.")
w, z, bins = y, x, ybins
dots = [dots] if np.isscalar(dots) else dots
ebar = [ebar] if np.isscalar(ebar) else ebar
line = [line] if np.isscalar(line) else line
fill = [fill] if np.isscalar(fill) else fill
if 0 in ebar or 0 in fill:
raise ValueError("`ebar` and `fill` can only set to 1 or 2")
# prepare data
zs = binquantile(w, z, bins=bins, nsig=[0, -1, -2, 1, 2], shape='stats',
weights=weights, nmin=nmin, nanas=nanas).stats
ws = binquantile(w, w, bins=bins, q=0.5,
weights=weights, nmin=nmin, nanas=nanas).stats
# default style
dots_args.setdefault('s', 20)
dots_args.setdefault('c', 'k')
dots_args.setdefault('edgecolor', 'none')
dots_args.setdefault('zorder', zorder + 0.3)
ebar_args.setdefault('ecolor', {1: 'k', 2: 'c'})
ebar_args.setdefault('fmt', 'none')
ebar_args.setdefault('zorder', zorder + 0.2)
line_args.setdefault('fmt', {0: 'k-', 1: 'b--', 2: 'g-.'})
line_args.setdefault('zorder', zorder)
fill_args.setdefault('color', {1: 'b', 2: 'g'})
fill_args.setdefault('alpha', {1: 0.5, 2: 0.3})
fill_args.setdefault('edgecolor', 'none')
fill_args.setdefault('zorder', zorder - 1)
# prepare plots
ax = plt.gca()
if xbins is not None:
xs, ys = [ws] * 5, zs
fill_between = ax.fill_between
err = 'yerr'
else:
xs, ys = zs, [ws] * 5
fill_between = ax.fill_betweenx
err = 'xerr'
# dots
for i, k in enumerate(dots):
args = _expand_args(dots_args, i, k)
ax.scatter(xs[k], ys[k], **args)
# ebar
for i, k in enumerate(ebar):
args = _expand_args(ebar_args, i, k)
args[err] = zs[0] - zs[k], zs[k + 2] - zs[0]
args['zorder'] = args['zorder'] + 0.1 * (1.5 - k)
ax.errorbar(xs[0], ys[0], **args)
# line
for i, k in enumerate(line):
args = _expand_args(line_args, i, k)
fmt = args.pop('fmt', '')
ax.plot(xs[k], ys[k], fmt, **args)
if k != 0:
args.pop('label', None)
ax.plot(xs[k + 2], ys[k + 2], fmt, **args)
# fill
for i, k in enumerate(fill):
args = _expand_args(fill_args, i, k)
fill_between(ws, zs[k], zs[k + 2], **args)
return
def compare_violin(x, y, xbins=None, ybins=None, nmin=1, nmax=10000,
xpos='median', side='both', widths=0.5, violin_args={},
ebar_args={}, **fill_args):
"""Show the conditional violin plot for two data sets.
xpos : ['center'|'median']
"""
violin_args = violin_args.copy()
violin_args.setdefault('vert', True)
violin_args.setdefault('showmedians', True)
# violin_args.setdefault('showextrema', False)
if ybins is None:
if xbins is None:
xbins = 10
else:
if xbins is not None:
raise ValueError("Only one of 'xbins' or 'ybins' can be given.")
violin_args['vert'] = not violin_args['vert']
return compare_violin(y, x, xbins=ybins, nmin=nmin, nmax=nmax, side=side,
widths=widths, violin_args=violin_args,
ebar_args=ebar_args, **fill_args)
nmin, nmax = int(nmin), int(nmax)
ix = (np.isfinite(x) & np.isfinite(y)).nonzero()
x, y = x[ix], y[ix]
bins = generate_bins(x, xbins)
bins_mid = (bins[:-1] + bins[1:]) * 0.5
idx = np.searchsorted(bins, x, side='right') - 1
dat, pos = [], []
for i in range(len(bins) - 1):
ix = (idx == i).nonzero()[0]
if ix.size >= nmin:
if xpos == 'center':
a, b = y[ix], bins_mid[i]
elif xpos == 'median':
a, b = y[ix], np.median(x[ix])
if a.size > nmax:
a = np.random.choice(a, nmax, replace=False)
dat.append(a)
pos.append(b)
collection = plt.violinplot(
dataset=dat, positions=pos, widths=widths, **violin_args)
if side in ['left', 'right', 'bottom', 'top']:
# https://stackoverflow.com/a/29781988/
for body in collection['bodies']:
if violin_args['vert']:
p = body.get_paths()[0].vertices[:, 0]
else:
p = body.get_paths()[0].vertices[:, 1]
if side in ['left', 'bottom']:
p[:] = np.clip(p, None, p.mean())
else:
p[:] = np.clip(p, p.mean(), None)
for key, value in collection.items():
if key == 'bodies':
if fill_args:
plt.setp(value, **fill_args)
else:
if ebar_args:
plt.setp(value, **ebar_args)
return collection
def compare_median(x, y, bins=10, nmin=3, alpha=0.33, show=['line', 'fill'],
fill_args={}, ebar_args={}, **line_args):
"""
alpha : float, optional
Confidence level of the intervals.
"""
from scipy.stats.mstats import median_cihs, hdmedian
bins = generate_bins(x, bins)
nbins = len(bins) - 1
idx = bins.searchsorted(x, side='right') - 1
xx, yy, lo, hi = np.full((4, nbins), np.nan, 'float')
for i in range(nbins):
ix = (idx == i).nonzero()
if ix[0].size < nmin:
continue
x_, y_ = x[ix], y[ix]
xx[i], yy[i] = np.median(x_), np.median(y_)
lo[i], hi[i] = median_cihs(y_, alpha=alpha)
# an alternative variance estimator is hdmedian:
# sig = hdmedian(y_, var=True).data[1]**0.5
if 'line' in show:
plt.plot(xx, yy, **line_args)
if 'fill' in show:
fill_args.setdefault('alpha', 0.5)
#fill_args.setdefault('edgecolor', 'none')
plt.fill_between(xx, lo, hi, **fill_args)
if 'ebar' in show:
errorbar2(xx, yy, (lo, hi), **ebar_args)
return xx, yy, lo, hi