-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdata_utils.py
executable file
·351 lines (263 loc) · 12.5 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from __future__ import division
from __future__ import print_function
import numpy as np
import pandas as pd
import scipy.sparse as sp
import random
import pdb
# For automatic dataset downloading
from urllib.request import urlopen
from zipfile import ZipFile
import shutil
import os.path
try:
from BytesIO import BytesIO
except ImportError:
from io import BytesIO
def data_iterator(data, batch_size):
"""
A simple data iterator from https://indico.io/blog/tensorflow-data-inputs-part1-placeholders-protobufs-queues/
:param data: list of numpy tensors that need to be randomly batched across their first dimension.
:param batch_size: int, batch_size of data_iterator.
Assumes same first dimension size of all numpy tensors.
:return: iterator over batches of numpy tensors
"""
# shuffle labels and features
max_idx = len(data[0])
idxs = np.arange(0, max_idx)
np.random.shuffle(idxs)
shuf_data = [dat[idxs] for dat in data]
# Does not yield last remainder of size less than batch_size
for i in range(max_idx//batch_size):
data_batch = [dat[i*batch_size:(i+1)*batch_size] for dat in shuf_data]
yield data_batch
def map_data(data):
"""
Map data to proper indices in case they are not in a continues [0, N) range
Parameters
----------
data : np.int32 arrays
Returns
-------
mapped_data : np.int32 arrays
n : length of mapped_data
"""
uniq = list(set(data))
id_dict = {old: new for new, old in enumerate(sorted(uniq))}
data = np.array([id_dict[x] for x in data])
n = len(uniq)
return data, id_dict, n
def download_dataset(dataset, files, data_dir):
""" Downloads dataset if files are not present. """
if not np.all([os.path.isfile(data_dir + f) for f in files]):
url = "http://files.grouplens.org/datasets/movielens/" + dataset.replace('_', '-') + '.zip'
request = urlopen(url)
print('Downloading %s dataset' % dataset)
if dataset in ['ml_100k', 'ml_1m']:
target_dir = 'raw_data/' + dataset.replace('_', '-')
elif dataset == 'ml_10m':
target_dir = 'raw_data/' + 'ml-10M100K'
else:
raise ValueError('Invalid dataset option %s' % dataset)
with ZipFile(BytesIO(request.read())) as zip_ref:
zip_ref.extractall('raw_data/')
os.rename(target_dir, data_dir)
#shutil.rmtree(target_dir)
def load_data(fname, seed=1234, verbose=True):
""" Loads dataset and creates adjacency matrix
and feature matrix
Parameters
----------
fname : str, dataset
seed: int, dataset shuffling seed
verbose: to print out statements or not
Returns
-------
num_users : int
Number of users and items respectively
num_items : int
u_nodes : np.int32 arrays
User indices
v_nodes : np.int32 array
item (movie) indices
ratings : np.float32 array
User/item ratings s.t. ratings[k] is the rating given by user u_nodes[k] to
item v_nodes[k]. Note that that the all pairs u_nodes[k]/v_nodes[k] are unique, but
not necessarily all u_nodes[k] or all v_nodes[k] separately.
u_features: np.float32 array, or None
If present in dataset, contains the features of the users.
v_features: np.float32 array, or None
If present in dataset, contains the features of the users.
seed: int,
For datashuffling seed with pythons own random.shuffle, as in CF-NADE.
"""
u_features = None
v_features = None
print('Loading dataset', fname)
data_dir = 'raw_data/' + fname
if fname == 'ml_100k':
# Check if files exist and download otherwise
files = ['/u.data', '/u.item', '/u.user']
download_dataset(fname, files, data_dir)
sep = '\t'
filename = data_dir + files[0]
dtypes = {
'u_nodes': np.int32, 'v_nodes': np.int32,
'ratings': np.float32, 'timestamp': np.float64}
data = pd.read_csv(
filename, sep=sep, header=None,
names=['u_nodes', 'v_nodes', 'ratings', 'timestamp'], dtype=dtypes)
# shuffle here like cf-nade paper with python's own random class
# make sure to convert to list, otherwise random.shuffle acts weird on it without a warning
data_array = data.values.tolist()
random.seed(seed)
random.shuffle(data_array)
data_array = np.array(data_array)
u_nodes_ratings = data_array[:, 0].astype(dtypes['u_nodes'])
v_nodes_ratings = data_array[:, 1].astype(dtypes['v_nodes'])
ratings = data_array[:, 2].astype(dtypes['ratings'])
u_nodes_ratings, u_dict, num_users = map_data(u_nodes_ratings)
v_nodes_ratings, v_dict, num_items = map_data(v_nodes_ratings)
u_nodes_ratings, v_nodes_ratings = u_nodes_ratings.astype(np.int64), v_nodes_ratings.astype(np.int32)
ratings = ratings.astype(np.float64)
# Movie features (genres)
sep = r'|'
movie_file = data_dir + files[1]
movie_headers = ['movie id', 'movie title', 'release date', 'video release date',
'IMDb URL', 'unknown', 'Action', 'Adventure', 'Animation',
'Childrens', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy',
'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi',
'Thriller', 'War', 'Western']
movie_df = pd.read_csv(movie_file, sep=sep, header=None,
names=movie_headers, engine='python')
genre_headers = movie_df.columns.values[6:]
num_genres = genre_headers.shape[0]
v_features = np.zeros((num_items, num_genres), dtype=np.float32)
for movie_id, g_vec in zip(movie_df['movie id'].values.tolist(), movie_df[genre_headers].values.tolist()):
# Check if movie_id was listed in ratings file and therefore in mapping dictionary
if movie_id in v_dict.keys():
v_features[v_dict[movie_id], :] = g_vec
# User features
sep = r'|'
users_file = data_dir + files[2]
users_headers = ['user id', 'age', 'gender', 'occupation', 'zip code']
users_df = pd.read_csv(users_file, sep=sep, header=None,
names=users_headers, engine='python')
occupation = set(users_df['occupation'].values.tolist())
gender_dict = {'M': 0., 'F': 1.}
occupation_dict = {f: i for i, f in enumerate(occupation, start=2)}
num_feats = 2 + len(occupation_dict)
u_features = np.zeros((num_users, num_feats), dtype=np.float32)
for _, row in users_df.iterrows():
u_id = row['user id']
if u_id in u_dict.keys():
# age
u_features[u_dict[u_id], 0] = row['age']
# gender
u_features[u_dict[u_id], 1] = gender_dict[row['gender']]
# occupation
u_features[u_dict[u_id], occupation_dict[row['occupation']]] = 1.
u_features = sp.csr_matrix(u_features)
v_features = sp.csr_matrix(v_features)
elif fname == 'ml_1m':
# Check if files exist and download otherwise
files = ['/ratings.dat', '/movies.dat', '/users.dat']
download_dataset(fname, files, data_dir)
sep = r'\:\:'
filename = data_dir + files[0]
dtypes = {
'u_nodes': np.int64, 'v_nodes': np.int64,
'ratings': np.float32, 'timestamp': np.float64}
# use engine='python' to ignore warning about switching to python backend when using regexp for sep
data = pd.read_csv(filename, sep=sep, header=None,
names=['u_nodes', 'v_nodes', 'ratings', 'timestamp'], converters=dtypes, engine='python')
# shuffle here like cf-nade paper with python's own random class
# make sure to convert to list, otherwise random.shuffle acts weird on it without a warning
data_array = data.values.tolist()
random.seed(seed)
random.shuffle(data_array)
data_array = np.array(data_array)
u_nodes_ratings = data_array[:, 0].astype(dtypes['u_nodes'])
v_nodes_ratings = data_array[:, 1].astype(dtypes['v_nodes'])
ratings = data_array[:, 2].astype(dtypes['ratings'])
u_nodes_ratings, u_dict, num_users = map_data(u_nodes_ratings)
v_nodes_ratings, v_dict, num_items = map_data(v_nodes_ratings)
u_nodes_ratings, v_nodes_ratings = u_nodes_ratings.astype(np.int64), v_nodes_ratings.astype(np.int64)
ratings = ratings.astype(np.float32)
# Load movie features
movies_file = data_dir + files[1]
movies_headers = ['movie_id', 'title', 'genre']
movies_df = pd.read_csv(movies_file, sep=sep, header=None,
names=movies_headers, engine='python')
# Extracting all genres
genres = []
for s in movies_df['genre'].values:
genres.extend(s.split('|'))
genres = list(set(genres))
num_genres = len(genres)
genres_dict = {g: idx for idx, g in enumerate(genres)}
# Creating 0 or 1 valued features for all genres
v_features = np.zeros((num_items, num_genres), dtype=np.float32)
for movie_id, s in zip(movies_df['movie_id'].values.tolist(), movies_df['genre'].values.tolist()):
# Check if movie_id was listed in ratings file and therefore in mapping dictionary
if movie_id in v_dict.keys():
gen = s.split('|')
for g in gen:
v_features[v_dict[movie_id], genres_dict[g]] = 1.
# Load user features
users_file = data_dir + files[2]
users_headers = ['user_id', 'gender', 'age', 'occupation', 'zip-code']
users_df = pd.read_csv(users_file, sep=sep, header=None,
names=users_headers, engine='python')
# Extracting all features
cols = users_df.columns.values[1:]
cntr = 0
feat_dicts = []
for header in cols:
d = dict()
feats = np.unique(users_df[header].values).tolist()
d.update({f: i for i, f in enumerate(feats, start=cntr)})
feat_dicts.append(d)
cntr += len(d)
num_feats = sum(len(d) for d in feat_dicts)
u_features = np.zeros((num_users, num_feats), dtype=np.float32)
for _, row in users_df.iterrows():
u_id = row['user_id']
if u_id in u_dict.keys():
for k, header in enumerate(cols):
u_features[u_dict[u_id], feat_dicts[k][row[header]]] = 1.
u_features = sp.csr_matrix(u_features)
v_features = sp.csr_matrix(v_features)
elif fname == 'ml_10m':
# Check if files exist and download otherwise
files = ['/ratings.dat']
download_dataset(fname, files, data_dir)
sep = r'\:\:'
filename = data_dir + files[0]
dtypes = {
'u_nodes': np.int64, 'v_nodes': np.int64,
'ratings': np.float32, 'timestamp': np.float64}
# use engine='python' to ignore warning about switching to python backend when using regexp for sep
data = pd.read_csv(filename, sep=sep, header=None,
names=['u_nodes', 'v_nodes', 'ratings', 'timestamp'], converters=dtypes, engine='python')
# shuffle here like cf-nade paper with python's own random class
# make sure to convert to list, otherwise random.shuffle acts weird on it without a warning
data_array = data.values.tolist()
random.seed(seed)
random.shuffle(data_array)
data_array = np.array(data_array)
u_nodes_ratings = data_array[:, 0].astype(dtypes['u_nodes'])
v_nodes_ratings = data_array[:, 1].astype(dtypes['v_nodes'])
ratings = data_array[:, 2].astype(dtypes['ratings'])
u_nodes_ratings, u_dict, num_users = map_data(u_nodes_ratings)
v_nodes_ratings, v_dict, num_items = map_data(v_nodes_ratings)
u_nodes_ratings, v_nodes_ratings = u_nodes_ratings.astype(np.int64), v_nodes_ratings.astype(np.int64)
ratings = ratings.astype(np.float32)
else:
raise ValueError('Dataset name not recognized: ' + fname)
if verbose:
print('Number of users = %d' % num_users)
print('Number of items = %d' % num_items)
print('Number of links = %d' % ratings.shape[0])
print('Fraction of positive links = %.4f' % (float(ratings.shape[0]) / (num_users * num_items),))
return num_users, num_items, u_nodes_ratings, v_nodes_ratings, ratings, u_features, v_features