-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter29.tex
782 lines (656 loc) · 22.3 KB
/
chapter29.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
\chapter{Geometry}
\index{geometry}
In geometric problems, it is often challenging
to find a way to approach the problem so that
the solution to the problem can be conveniently implemented
and the number of special cases is small.
As an example, consider a problem where
we are given the vertices of a quadrilateral
(a polygon that has four vertices),
and our task is to calculate its area.
For example, a possible input for the problem is as follows:
\begin{center}
\begin{tikzpicture}[scale=0.45]
\draw[fill] (6,2) circle [radius=0.1];
\draw[fill] (5,6) circle [radius=0.1];
\draw[fill] (2,5) circle [radius=0.1];
\draw[fill] (1,1) circle [radius=0.1];
\draw[thick] (6,2) -- (5,6) -- (2,5) -- (1,1) -- (6,2);
\end{tikzpicture}
\end{center}
One way to approach the problem is to divide
the quadrilateral into two triangles by a straight
line between two opposite vertices:
\begin{center}
\begin{tikzpicture}[scale=0.45]
\draw[fill] (6,2) circle [radius=0.1];
\draw[fill] (5,6) circle [radius=0.1];
\draw[fill] (2,5) circle [radius=0.1];
\draw[fill] (1,1) circle [radius=0.1];
\draw[thick] (6,2) -- (5,6) -- (2,5) -- (1,1) -- (6,2);
\draw[dashed,thick] (2,5) -- (6,2);
\end{tikzpicture}
\end{center}
After this, it suffices to sum the areas
of the triangles.
The area of a triangle can be calculated,
for example, using \key{Heron's formula}
%\footnote{Heron of Alexandria (c. 10--70) was a Greek mathematician.}
\[ \sqrt{s (s-a) (s-b) (s-c)},\]
where $a$, $b$ and $c$ are the lengths
of the triangle's sides and
$s=(a+b+c)/2$.
\index{Heron's formula}
This is a possible way to solve the problem,
but there is one pitfall:
how to divide the quadrilateral into triangles?
It turns out that sometimes we cannot just pick
two arbitrary opposite vertices.
For example, in the following situation,
the division line is \emph{outside} the quadrilateral:
\begin{center}
\begin{tikzpicture}[scale=0.45]
\draw[fill] (6,2) circle [radius=0.1];
\draw[fill] (3,2) circle [radius=0.1];
\draw[fill] (2,5) circle [radius=0.1];
\draw[fill] (1,1) circle [radius=0.1];
\draw[thick] (6,2) -- (3,2) -- (2,5) -- (1,1) -- (6,2);
\draw[dashed,thick] (2,5) -- (6,2);
\end{tikzpicture}
\end{center}
However, another way to draw the line works:
\begin{center}
\begin{tikzpicture}[scale=0.45]
\draw[fill] (6,2) circle [radius=0.1];
\draw[fill] (3,2) circle [radius=0.1];
\draw[fill] (2,5) circle [radius=0.1];
\draw[fill] (1,1) circle [radius=0.1];
\draw[thick] (6,2) -- (3,2) -- (2,5) -- (1,1) -- (6,2);
\draw[dashed,thick] (3,2) -- (1,1);
\end{tikzpicture}
\end{center}
It is clear for a human which of the lines is the correct
choice, but the situation is difficult for a computer.
However, it turns out that we can solve the problem using
another method that is more convenient to a programmer.
Namely, there is a general formula
\[x_1y_2-x_2y_1+x_2y_3-x_3y_2+x_3y_4-x_4y_3+x_4y_1-x_1y_4,\]
that calculates the area of a quadrilateral
whose vertices are
$(x_1,y_1)$,
$(x_2,y_2)$,
$(x_3,y_3)$ and
$(x_4,y_4)$.
This formula is easy to implement, there are no special
cases, and we can even generalize the formula
to \emph{all} polygons.
\section{Complex numbers}
\index{complex number}
\index{point}
\index{vector}
A \key{complex number} is a number of the form $x+y i$,
where $i = \sqrt{-1}$ is the \key{imaginary unit}.
A geometric interpretation of a complex number is
that it represents a two-dimensional point $(x,y)$
or a vector from the origin to a point $(x,y)$.
For example, $4+2i$ corresponds to the
following point and vector:
\begin{center}
\begin{tikzpicture}[scale=0.45]
\draw[->,thick] (-5,0)--(5,0);
\draw[->,thick] (0,-5)--(0,5);
\draw[fill] (4,2) circle [radius=0.1];
\draw[->,thick] (0,0)--(4-0.1,2-0.1);
\node at (4,2.8) {$(4,2)$};
\end{tikzpicture}
\end{center}
\index{complex@\texttt{complex}}
The C++ complex number class \texttt{complex} is
useful when solving geometric problems.
Using the class we can represent points and vectors
as complex numbers, and the class contains tools
that are useful in geometry.
In the following code, \texttt{C} is the type of
a coordinate and \texttt{P} is the type of a point or a vector.
In addition, the code defines macros \texttt{X} and \texttt{Y}
that can be used to refer to x and y coordinates.
\begin{lstlisting}
typedef long long C;
typedef complex<C> P;
#define X real()
#define Y imag()
\end{lstlisting}
For example, the following code defines a point $p=(4,2)$
and prints its x and y coordinates:
\begin{lstlisting}
P p = {4,2};
cout << p.X << " " << p.Y << "\n"; // 4 2
\end{lstlisting}
The following code defines vectors $v=(3,1)$ and $u=(2,2)$,
and after that calculates the sum $s=v+u$.
\begin{lstlisting}
P v = {3,1};
P u = {2,2};
P s = v+u;
cout << s.X << " " << s.Y << "\n"; // 5 3
\end{lstlisting}
In practice,
an appropriate coordinate type is usually
\texttt{long long} (integer) or \texttt{long double}
(real number).
It is a good idea to use integer whenever possible,
because calculations with integers are exact.
If real numbers are needed,
precision errors should be taken into account
when comparing numbers.
A safe way to check if real numbers $a$ and $b$ are equal
is to compare them using $|a-b|<\epsilon$,
where $\epsilon$ is a small number (for example, $\epsilon=10^{-9}$).
\subsubsection*{Functions}
In the following examples, the coordinate type is
\texttt{long double}.
The function $\texttt{abs}(v)$ calculates the length
$|v|$ of a vector $v=(x,y)$
using the formula $\sqrt{x^2+y^2}$.
The function can also be used for
calculating the distance between points
$(x_1,y_1)$ and $(x_2,y_2)$,
because that distance equals the length
of the vector $(x_2-x_1,y_2-y_1)$.
The following code calculates the distance
between points $(4,2)$ and $(3,-1)$:
\begin{lstlisting}
P a = {4,2};
P b = {3,-1};
cout << abs(b-a) << "\n"; // 3.16228
\end{lstlisting}
The function $\texttt{arg}(v)$ calculates the
angle of a vector $v=(x,y)$ with respect to the x axis.
The function gives the angle in radians,
where $r$ radians equals $180 r/\pi$ degrees.
The angle of a vector that points to the right is 0,
and angles decrease clockwise and increase
counterclockwise.
The function $\texttt{polar}(s,a)$ constructs a vector
whose length is $s$ and that points to an angle $a$.
A vector can be rotated by an angle $a$
by multiplying it by a vector with length 1 and angle $a$.
The following code calculates the angle of
the vector $(4,2)$, rotates it $1/2$ radians
counterclockwise, and then calculates the angle again:
\begin{lstlisting}
P v = {4,2};
cout << arg(v) << "\n"; // 0.463648
v *= polar(1.0,0.5);
cout << arg(v) << "\n"; // 0.963648
\end{lstlisting}
\section{Points and lines}
\index{cross product}
The \key{cross product} $a \times b$ of vectors
$a=(x_1,y_1)$ and $b=(x_2,y_2)$ is calculated
using the formula $x_1 y_2 - x_2 y_1$.
The cross product tells us whether $b$
turns left (positive value), does not turn (zero)
or turns right (negative value)
when it is placed directly after $a$.
The following picture illustrates the above cases:
\begin{center}
\begin{tikzpicture}[scale=0.45]
\draw[->,thick] (0,0)--(4,2);
\draw[->,thick] (4,2)--(4+1,2+2);
\node at (2.5,0.5) {$a$};
\node at (5,2.5) {$b$};
\node at (3,-2) {$a \times b = 6$};
\draw[->,thick] (8+0,0)--(8+4,2);
\draw[->,thick] (8+4,2)--(8+4+2,2+1);
\node at (8+2.5,0.5) {$a$};
\node at (8+5,1.5) {$b$};
\node at (8+3,-2) {$a \times b = 0$};
\draw[->,thick] (16+0,0)--(16+4,2);
\draw[->,thick] (16+4,2)--(16+4+2,2-1);
\node at (16+2.5,0.5) {$a$};
\node at (16+5,2.5) {$b$};
\node at (16+3,-2) {$a \times b = -8$};
\end{tikzpicture}
\end{center}
\noindent
For example, in the first case
$a=(4,2)$ and $b=(1,2)$.
The following code calculates the cross product
using the class \texttt{complex}:
\begin{lstlisting}
P a = {4,2};
P b = {1,2};
C p = (conj(a)*b).Y; // 6
\end{lstlisting}
The above code works, because
the function \texttt{conj} negates the y coordinate
of a vector,
and when the vectors $(x_1,-y_1)$ and $(x_2,y_2)$
are multiplied together, the y coordinate
of the result is $x_1 y_2 - x_2 y_1$.
\subsubsection{Point location}
Cross products can be used to test
whether a point is located on the left or right
side of a line.
Assume that the line goes through points
$s_1$ and $s_2$, we are looking from $s_1$
to $s_2$ and the point is $p$.
For example, in the following picture,
$p$ is on the left side of the line:
\begin{center}
\begin{tikzpicture}[scale=0.45]
\draw[dashed,thick,->] (0,-3)--(12,6);
\draw[fill] (4,0) circle [radius=0.1];
\draw[fill] (8,3) circle [radius=0.1];
\draw[fill] (5,3) circle [radius=0.1];
\node at (4,-1) {$s_1$};
\node at (8,2) {$s_2$};
\node at (5,4) {$p$};
\end{tikzpicture}
\end{center}
The cross product $(p-s_1) \times (p-s_2)$
tells us the location of the point $p$.
If the cross product is positive,
$p$ is located on the left side,
and if the cross product is negative,
$p$ is located on the right side.
Finally, if the cross product is zero,
points $s_1$, $s_2$ and $p$ are on the same line.
\subsubsection{Line segment intersection}
\index{line segment intersection}
Next we consider the problem of testing
whether two line segments
$ab$ and $cd$ intersect. The possible cases are:
\textit{Case 1:}
The line segments are on the same line
and they overlap each other.
In this case, there is an infinite number of
intersection points.
For example, in the following picture,
all points between $c$ and $b$ are
intersection points:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\draw (1.5,1.5)--(6,3);
\draw (0,1)--(4.5,2.5);
\draw[fill] (0,1) circle [radius=0.05];
\node at (0,0.5) {$a$};
\draw[fill] (1.5,1.5) circle [radius=0.05];
\node at (6,2.5) {$d$};
\draw[fill] (4.5,2.5) circle [radius=0.05];
\node at (1.5,1) {$c$};
\draw[fill] (6,3) circle [radius=0.05];
\node at (4.5,2) {$b$};
\end{tikzpicture}
\end{center}
In this case, we can use cross products to
check if all points are on the same line.
After this, we can sort the points and check
whether the line segments overlap each other.
\textit{Case 2:}
The line segments have a common vertex
that is the only intersection point.
For example, in the following picture the
intersection point is $b=c$:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\draw (0,0)--(4,2);
\draw (4,2)--(6,1);
\draw[fill] (0,0) circle [radius=0.05];
\draw[fill] (4,2) circle [radius=0.05];
\draw[fill] (6,1) circle [radius=0.05];
\node at (0,0.5) {$a$};
\node at (4,2.5) {$b=c$};
\node at (6,1.5) {$d$};
\end{tikzpicture}
\end{center}
This case is easy to check, because
there are only four possibilities
for the intersection point:
$a=c$, $a=d$, $b=c$ and $b=d$.
\textit{Case 3:}
There is exactly one intersection point
that is not a vertex of any line segment.
In the following picture, the point $p$
is the intersection point:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\draw (0,1)--(6,3);
\draw (2,4)--(4,0);
\draw[fill] (0,1) circle [radius=0.05];
\node at (0,0.5) {$c$};
\draw[fill] (6,3) circle [radius=0.05];
\node at (6,2.5) {$d$};
\draw[fill] (2,4) circle [radius=0.05];
\node at (1.5,3.5) {$a$};
\draw[fill] (4,0) circle [radius=0.05];
\node at (4,-0.4) {$b$};
\draw[fill] (3,2) circle [radius=0.05];
\node at (3,1.5) {$p$};
\end{tikzpicture}
\end{center}
In this case, the line segments intersect
exactly when both points $c$ and $d$ are
on different sides of a line through $a$ and $b$,
and points $a$ and $b$ are on different
sides of a line through $c$ and $d$.
We can use cross products to check this.
\subsubsection{Point distance from a line}
Another feature of cross products is that
the area of a triangle can be calculated
using the formula
\[\frac{| (a-c) \times (b-c) |}{2},\]
where $a$, $b$ and $c$ are the vertices of the triangle.
Using this fact, we can derive a formula
for calculating the shortest distance between a point and a line.
For example, in the following picture $d$ is the
shortest distance between the point $p$ and the line
that is defined by the points $s_1$ and $s_2$:
\begin{center}
\begin{tikzpicture}[scale=0.75]
\draw (-2,-1)--(6,3);
\draw[dashed] (1,4)--(2.40,1.2);
\node at (0,-0.5) {$s_1$};
\node at (4,1.5) {$s_2$};
\node at (0.5,4) {$p$};
\node at (2,2.7) {$d$};
\draw[fill] (0,0) circle [radius=0.05];
\draw[fill] (4,2) circle [radius=0.05];
\draw[fill] (1,4) circle [radius=0.05];
\end{tikzpicture}
\end{center}
The area of the triangle whose vertices are
$s_1$, $s_2$ and $p$ can be calculated in two ways:
it is both
$\frac{1}{2} |s_2-s_1| d$ and
$\frac{1}{2} ((s_1-p) \times (s_2-p))$.
Thus, the shortest distance is
\[ d = \frac{(s_1-p) \times (s_2-p)}{|s_2-s_1|} .\]
\subsubsection{Point inside a polygon}
Let us now consider the problem of
testing whether a point is located inside or outside
a polygon.
For example, in the following picture point $a$
is inside the polygon and point $b$ is outside
the polygon.
\begin{center}
\begin{tikzpicture}[scale=0.75]
%\draw (0,0)--(2,-2)--(3,1)--(5,1)--(2,3)--(1,2)--(-1,2)--(1,4)--(-2,4)--(-2,1)--(-3,3)--(-4,0)--(0,0);
\draw (0,0)--(2,2)--(5,1)--(2,3)--(1,2)--(-1,2)--(1,4)--(-2,4)--(-2,1)--(-3,3)--(-4,0)--(0,0);
\draw[fill] (-3,1) circle [radius=0.05];
\node at (-3,0.5) {$a$};
\draw[fill] (1,3) circle [radius=0.05];
\node at (1,2.5) {$b$};
\end{tikzpicture}
\end{center}
A convenient way to solve the problem is to
send a \emph{ray} from the point to an arbitrary direction
and calculate the number of times it touches
the boundary of the polygon.
If the number is odd,
the point is inside the polygon,
and if the number is even,
the point is outside the polygon.
\begin{samepage}
For example, we could send the following rays:
\begin{center}
\begin{tikzpicture}[scale=0.75]
\draw (0,0)--(2,2)--(5,1)--(2,3)--(1,2)--(-1,2)--(1,4)--(-2,4)--(-2,1)--(-3,3)--(-4,0)--(0,0);
\draw[fill] (-3,1) circle [radius=0.05];
\node at (-3,0.5) {$a$};
\draw[fill] (1,3) circle [radius=0.05];
\node at (1,2.5) {$b$};
\draw[dashed,->] (-3,1)--(-6,0);
\draw[dashed,->] (-3,1)--(0,5);
\draw[dashed,->] (1,3)--(3.5,0);
\draw[dashed,->] (1,3)--(3,4);
\end{tikzpicture}
\end{center}
\end{samepage}
The rays from $a$ touch 1 and 3 times
the boundary of the polygon,
so $a$ is inside the polygon.
Correspondingly, the rays from $b$
touch 0 and 2 times the boundary of the polygon,
so $b$ is outside the polygon.
\section{Polygon area}
A general formula for calculating the area
of a polygon, sometimes called the \key{shoelace formula},
is as follows: \index{shoelace formula}
\[\frac{1}{2} |\sum_{i=1}^{n-1} (p_i \times p_{i+1})| =
\frac{1}{2} |\sum_{i=1}^{n-1} (x_i y_{i+1} - x_{i+1} y_i)|, \]
Here the vertices are
$p_1=(x_1,y_1)$, $p_2=(x_2,y_2)$, $\ldots$, $p_n=(x_n,y_n)$
in such an order that
$p_i$ and $p_{i+1}$ are adjacent vertices on the boundary
of the polygon,
and the first and last vertex is the same, i.e., $p_1=p_n$.
For example, the area of the polygon
\begin{center}
\begin{tikzpicture}[scale=0.7]
\filldraw (4,1.4) circle (2pt);
\filldraw (7,3.4) circle (2pt);
\filldraw (5,5.4) circle (2pt);
\filldraw (2,4.4) circle (2pt);
\filldraw (4,3.4) circle (2pt);
\node (1) at (4,1) {(4,1)};
\node (2) at (7.2,3) {(7,3)};
\node (3) at (5,5.8) {(5,5)};
\node (4) at (2,4) {(2,4)};
\node (5) at (3.5,3) {(4,3)};
\path[draw] (4,1.4) -- (7,3.4) -- (5,5.4) -- (2,4.4) -- (4,3.4) -- (4,1.4);
\end{tikzpicture}
\end{center}
is
\[\frac{|(2\cdot5-5\cdot4)+(5\cdot3-7\cdot5)+(7\cdot1-4\cdot3)+(4\cdot3-4\cdot1)+(4\cdot4-2\cdot3)|}{2} = 17/2.\]
The idea of the formula is to go through trapezoids
whose one side is a side of the polygon,
and another side lies on the horizontal line $y=0$.
For example:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\path[draw,fill=lightgray] (5,5.4) -- (7,3.4) -- (7,0) -- (5,0) -- (5,5.4);
\filldraw (4,1.4) circle (2pt);
\filldraw (7,3.4) circle (2pt);
\filldraw (5,5.4) circle (2pt);
\filldraw (2,4.4) circle (2pt);
\filldraw (4,3.4) circle (2pt);
\node (1) at (4,1) {(4,1)};
\node (2) at (7.2,3) {(7,3)};
\node (3) at (5,5.8) {(5,5)};
\node (4) at (2,4) {(2,4)};
\node (5) at (3.5,3) {(4,3)};
\path[draw] (4,1.4) -- (7,3.4) -- (5,5.4) -- (2,4.4) -- (4,3.4) -- (4,1.4);
\draw (0,0) -- (10,0);
\end{tikzpicture}
\end{center}
The area of such a trapezoid is
\[(x_{i+1}-x_{i}) \frac{y_i+y_{i+1}}{2},\]
where the vertices of the polygon are $p_i$ and $p_{i+1}$.
If $x_{i+1}>x_{i}$, the area is positive,
and if $x_{i+1}<x_{i}$, the area is negative.
The area of the polygon is the sum of areas of
all such trapezoids, which yields the formula
\[|\sum_{i=1}^{n-1} (x_{i+1}-x_{i}) \frac{y_i+y_{i+1}}{2}| =
\frac{1}{2} |\sum_{i=1}^{n-1} (x_i y_{i+1} - x_{i+1} y_i)|.\]
Note that the absolute value of the sum is taken,
because the value of the sum may be positive or negative,
depending on whether we walk clockwise or counterclockwise
along the boundary of the polygon.
\subsubsection{Pick's theorem}
\index{Pick's theorem}
\key{Pick's theorem} provides another way to calculate
the area of a polygon provided that all vertices
of the polygon have integer coordinates.
According to Pick's theorem, the area of the polygon is
\[ a + b/2 -1,\]
where $a$ is the number of integer points inside the polygon
and $b$ is the number of integer points on the boundary of the polygon.
For example, the area of the polygon
\begin{center}
\begin{tikzpicture}[scale=0.7]
\filldraw (4,1.4) circle (2pt);
\filldraw (7,3.4) circle (2pt);
\filldraw (5,5.4) circle (2pt);
\filldraw (2,4.4) circle (2pt);
\filldraw (4,3.4) circle (2pt);
\node (1) at (4,1) {(4,1)};
\node (2) at (7.2,3) {(7,3)};
\node (3) at (5,5.8) {(5,5)};
\node (4) at (2,4) {(2,4)};
\node (5) at (3.5,3) {(4,3)};
\path[draw] (4,1.4) -- (7,3.4) -- (5,5.4) -- (2,4.4) -- (4,3.4) -- (4,1.4);
\filldraw (2,4.4) circle (2pt);
\filldraw (3,4.4) circle (2pt);
\filldraw (4,4.4) circle (2pt);
\filldraw (5,4.4) circle (2pt);
\filldraw (6,4.4) circle (2pt);
\filldraw (4,3.4) circle (2pt);
\filldraw (5,3.4) circle (2pt);
\filldraw (6,3.4) circle (2pt);
\filldraw (7,3.4) circle (2pt);
\filldraw (4,2.4) circle (2pt);
\filldraw (5,2.4) circle (2pt);
\end{tikzpicture}
\end{center}
is $6+7/2-1=17/2$.
\section{Distance functions}
\index{distance function}
\index{Euclidean distance}
\index{Manhattan distance}
A \key{distance function} defines the distance between
two points.
The usual distance function is the
\key{Euclidean distance} where the distance between
points $(x_1,y_1)$ and $(x_2,y_2)$ is
\[\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}.\]
An alternative distance function is the
\key{Manhattan distance}
where the distance between points
$(x_1,y_1)$ and $(x_2,y_2)$ is
\[|x_1-x_2|+|y_1-y_2|.\]
\begin{samepage}
For example, consider the following picture:
\begin{center}
\begin{tikzpicture}
\draw[fill] (2,1) circle [radius=0.05];
\draw[fill] (5,2) circle [radius=0.05];
\node at (2,0.5) {$(2,1)$};
\node at (5,1.5) {$(5,2)$};
\draw[dashed] (2,1) -- (5,2);
\draw[fill] (5+2,1) circle [radius=0.05];
\draw[fill] (5+5,2) circle [radius=0.05];
\node at (5+2,0.5) {$(2,1)$};
\node at (5+5,1.5) {$(5,2)$};
\draw[dashed] (5+2,1) -- (5+2,2);
\draw[dashed] (5+2,2) -- (5+5,2);
\node at (3.5,-0.5) {Euclidean distance};
\node at (5+3.5,-0.5) {Manhattan distance};
\end{tikzpicture}
\end{center}
\end{samepage}
The Euclidean distance between the points is
\[\sqrt{(5-2)^2+(2-1)^2}=\sqrt{10}\]
and the Manhattan distance is
\[|5-2|+|2-1|=4.\]
The following picture shows regions that are within a distance of 1
from the center point, using the Euclidean and Manhattan distances:
\begin{center}
\begin{tikzpicture}
\draw[fill=gray!20] (0,0) circle [radius=1];
\draw[fill] (0,0) circle [radius=0.05];
\node at (0,-1.5) {Euclidean distance};
\draw[fill=gray!20] (5+0,1) -- (5-1,0) -- (5+0,-1) -- (5+1,0) -- (5+0,1);
\draw[fill] (5,0) circle [radius=0.05];
\node at (5,-1.5) {Manhattan distance};
\end{tikzpicture}
\end{center}
\subsubsection{Rotating coordinates}
Some problems are easier to solve if
Manhattan distances are used instead of Euclidean distances.
As an example, consider a problem where we are given
$n$ points in the two-dimensional plane
and our task is to calculate the maximum Manhattan
distance between any two points.
For example, consider the following set of points:
\begin{center}
\begin{tikzpicture}[scale=0.65]
\draw[color=gray] (-1,-1) grid (4,4);
\filldraw (0,2) circle (2.5pt);
\filldraw (3,3) circle (2.5pt);
\filldraw (1,0) circle (2.5pt);
\filldraw (3,1) circle (2.5pt);
\node at (0,1.5) {$A$};
\node at (3,2.5) {$C$};
\node at (1,-0.5) {$B$};
\node at (3,0.5) {$D$};
\end{tikzpicture}
\end{center}
The maximum Manhattan distance is 5
between points $B$ and $C$:
\begin{center}
\begin{tikzpicture}[scale=0.65]
\draw[color=gray] (-1,-1) grid (4,4);
\filldraw (0,2) circle (2.5pt);
\filldraw (3,3) circle (2.5pt);
\filldraw (1,0) circle (2.5pt);
\filldraw (3,1) circle (2.5pt);
\node at (0,1.5) {$A$};
\node at (3,2.5) {$C$};
\node at (1,-0.5) {$B$};
\node at (3,0.5) {$D$};
\path[draw=red,thick,line width=2pt] (1,0) -- (1,3) -- (3,3);
\end{tikzpicture}
\end{center}
A useful technique related to Manhattan distances
is to rotate all coordinates 45 degrees so that
a point $(x,y)$ becomes $(x+y,y-x)$.
For example, after rotating the above points,
the result is:
\begin{center}
\begin{tikzpicture}[scale=0.6]
\draw[color=gray] (0,-3) grid (7,3);
\filldraw (2,2) circle (2.5pt);
\filldraw (6,0) circle (2.5pt);
\filldraw (1,-1) circle (2.5pt);
\filldraw (4,-2) circle (2.5pt);
\node at (2,1.5) {$A$};
\node at (6,-0.5) {$C$};
\node at (1,-1.5) {$B$};
\node at (4,-2.5) {$D$};
\end{tikzpicture}
\end{center}
And the maximum distance is as follows:
\begin{center}
\begin{tikzpicture}[scale=0.6]
\draw[color=gray] (0,-3) grid (7,3);
\filldraw (2,2) circle (2.5pt);
\filldraw (6,0) circle (2.5pt);
\filldraw (1,-1) circle (2.5pt);
\filldraw (4,-2) circle (2.5pt);
\node at (2,1.5) {$A$};
\node at (6,-0.5) {$C$};
\node at (1,-1.5) {$B$};
\node at (4,-2.5) {$D$};
\path[draw=red,thick,line width=2pt] (1,-1) -- (4,2) -- (6,0);
\end{tikzpicture}
\end{center}
Consider two points $p_1=(x_1,y_1)$ and $p_2=(x_2,y_2)$ whose rotated
coordinates are $p'_1=(x'_1,y'_1)$ and $p'_2=(x'_2,y'_2)$.
Now there are two ways to express the Manhattan distance
between $p_1$ and $p_2$:
\[|x_1-x_2|+|y_1-y_2| = \max(|x'_1-x'_2|,|y'_1-y'_2|)\]
For example, if $p_1=(1,0)$ and $p_2=(3,3)$,
the rotated coordinates are $p'_1=(1,-1)$ and $p'_2=(6,0)$
and the Manhattan distance is
\[|1-3|+|0-3| = \max(|1-6|,|-1-0|) = 5.\]
The rotated coordinates provide a simple way
to operate with Manhattan distances, because we can
consider x and y coordinates separately.
To maximize the Manhattan distance between two points,
we should find two points whose
rotated coordinates maximize the value of
\[\max(|x'_1-x'_2|,|y'_1-y'_2|).\]
This is easy, because either the horizontal or vertical
difference of the rotated coordinates has to be maximum.