forked from brianchmiel/TransformCodingInference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
157 lines (123 loc) · 5.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import print_function
import torch
import argparse
import logging
import os
import time
from datetime import datetime
from inspect import getfile, currentframe
from os import getpid, environ
from os.path import dirname, abspath
from socket import gethostname
from sys import exit, argv
import numpy as np
import torch.backends.cudnn as cudnn
import torch.optim as optim
import tqdm
from torch import manual_seed as torch_manual_seed
from torch.cuda import is_available, set_device
from torch.cuda import manual_seed as cuda_manual_seed
from torch.nn import CrossEntropyLoss
import Models
from run import Run
from utils import loadModelNames, saveArgsToJSON, TqdmLoggingHandler, load_data
from quantizeWeights import quantizeWeights
def parseArgs():
modelNames = loadModelNames()
parser = argparse.ArgumentParser(description='Feature Map Transform Coding')
parser.add_argument('--data', type=str, help='location of the data corpus', required = True)
parser.add_argument('--gpu', type=str, default='0', help='gpu device id, e.g. 0,1,3')
parser.add_argument('--batch', default=250, type=int, help='batch size')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--actBitwidth', default=32, type=float,
help='Quantization activation bitwidth (default: 32)')
parser.add_argument('--weightBitwidth', default=32, type=int,
help='Quantization weight bitwidth (default: 32)')
parser.add_argument('--model', '-a', metavar='MODEL', choices=modelNames,
help='model architecture: ' + ' | '.join(modelNames))
parser.add_argument('--MicroBlockSz', type=int, default=1, help='Size of block in H*W')
parser.add_argument('--channelsDiv', type=int, default=1, help='How many parts divide the number of channels')
parser.add_argument('--eigenVar', type=float, default=1.0, help='EigenVar - should be between 0 to 1')
parser.add_argument('--transformType', type=str, default='eye', choices=['eye', 'pca', 'pcaT','pcaQ'],
help='which projection we do: [eye, pca, pcaQ, pcaT]')
parser.add_argument('--transform', action='store_true', help='if use linear transformation, otherwise use regular inference')
parser.add_argument('--fold', action='store_true',
help='if use fold for hardware implementation, currently only in resnet18')
args = parser.parse_args()
# update GPUs list
if type(args.gpu) is not 'None':
args.gpu = [int(i) for i in args.gpu.split(',')]
args.device = 'cuda:' + str(args.gpu[0])
# create folder
baseFolder = dirname(abspath(getfile(currentframe())))
args.time = time.strftime("%Y%m%d-%H%M%S")
args.folderName = '{}_{}_{}_{}_{}_{}_{}'.format(args.model, args.transformType, args.actBitwidth, args.weightBitwidth, args.MicroBlockSz,
args.channelsDiv, args.time)
args.save = '{}/results/{}'.format(baseFolder, args.folderName)
if not os.path.exists(args.save):
os.makedirs(args.save)
# save args to JSON
saveArgsToJSON(args)
return args
if __name__ == '__main__':
args = parseArgs()
if not is_available():
print('no gpu device available')
exit(1)
# CUDA
args.seed = datetime.now().microsecond
np.random.seed(args.seed)
set_device(args.gpu[0])
cudnn.benchmark = True
torch_manual_seed(args.seed)
cudnn.enabled = True
cuda_manual_seed(args.seed)
# Logger
log_format = '%(asctime)s %(message)s'
logging.basicConfig(filename=os.path.join(args.save, 'log.txt'), level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
th = TqdmLoggingHandler()
th.setFormatter(logging.Formatter(log_format))
log = logging.getLogger()
log.addHandler(th)
# Data
testLoader, statloader = load_data(args, logging)
# Model
logging.info('==> Building model..')
#currently fold only for resnet18 for HW implementation
if args.fold:
assert (args.model == 'resnet18')
args.model += 'a'
modelClass = Models.__dict__[args.model]
model = modelClass(args)
# Load preTrained weights.
logging.info('==> Resuming from checkpoint..')
model.loadPreTrained()
model = model.cuda()
criterion = CrossEntropyLoss().cuda()
run = Run(model, logging, criterion)
# log command line
logging.info('CommandLine: {} PID: {} '
'Hostname: {} CUDA_VISIBLE_DEVICES {}'.format(argv, getpid(), gethostname(),
environ.get('CUDA_VISIBLE_DEVICES')))
# Weights quantization
if args.weightBitwidth < 32 and not args.fold:
model_path = './qmodels'
if not os.path.exists(model_path):
os.makedirs(model_path)
model_path = os.path.join(model_path, args.model + ('_kmeans%dbit.pt' % args.weightBitwidth))
if not os.path.exists(model_path):
model = quantizeWeights(model, args.weightBitwidth, logging)
torch.save(model, model_path)
else:
torch.load(model_path)
logging.info('Loaded preTrained model with weights quantized to {} bits'.format(args.weightBitwidth))
# collect statistics
logging.info('Starting collect statistics')
run.collectStats(statloader)
logging.info('Finish collect statistics')
# Weights quantization
if args.weightBitwidth < 32 and args.fold:
run.model = quantizeWeights(run.model.cpu(), args.weightBitwidth, logging).cuda()
logging.info('Run Projection on inference')
run.runTest(args, testLoader, 0)