forked from cjlin1/libsvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm-predict.c
239 lines (209 loc) · 5.41 KB
/
svm-predict.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "svm.h"
int print_null(const char *s,...) {return 0;}
static int (*info)(const char *fmt,...) = &printf;
struct svm_node *x;
int max_nr_attr = 64;
struct svm_model* model;
int predict_probability=0;
static char *line = NULL;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,'\n') == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line,max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
void exit_input_error(int line_num)
{
fprintf(stderr,"Wrong input format at line %d\n", line_num);
exit(1);
}
void predict(FILE *input, FILE *output)
{
int correct = 0;
int total = 0;
double error = 0;
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
int svm_type=svm_get_svm_type(model);
int nr_class=svm_get_nr_class(model);
double *prob_estimates=NULL;
int j;
if(predict_probability)
{
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
else
{
int *labels=(int *) malloc(nr_class*sizeof(int));
svm_get_labels(model,labels);
prob_estimates = (double *) malloc(nr_class*sizeof(double));
fprintf(output,"labels");
for(j=0;j<nr_class;j++)
fprintf(output," %d",labels[j]);
fprintf(output,"\n");
free(labels);
}
}
max_line_len = 1024;
line = (char *)malloc(max_line_len*sizeof(char));
while(readline(input) != NULL)
{
int i = 0;
double target_label, predict_label;
char *idx, *val, *label, *endptr;
int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
label = strtok(line," \t\n");
if(label == NULL) // empty line
exit_input_error(total+1);
target_label = strtod(label,&endptr);
if(endptr == label || *endptr != '\0')
exit_input_error(total+1);
while(1)
{
if(i>=max_nr_attr-1) // need one more for index = -1
{
max_nr_attr *= 2;
x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
}
idx = strtok(NULL,":");
val = strtok(NULL," \t");
if(val == NULL)
break;
errno = 0;
x[i].index = (int) strtol(idx,&endptr,10);
if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
exit_input_error(total+1);
else
inst_max_index = x[i].index;
errno = 0;
x[i].value = strtod(val,&endptr);
if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
exit_input_error(total+1);
++i;
}
x[i].index = -1;
if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC))
{
predict_label = svm_predict_probability(model,x,prob_estimates);
fprintf(output,"%g",predict_label);
for(j=0;j<nr_class;j++)
fprintf(output," %g",prob_estimates[j]);
fprintf(output,"\n");
}
else
{
predict_label = svm_predict(model,x);
fprintf(output,"%g\n",predict_label);
}
if(predict_label == target_label)
++correct;
error += (predict_label-target_label)*(predict_label-target_label);
sump += predict_label;
sumt += target_label;
sumpp += predict_label*predict_label;
sumtt += target_label*target_label;
sumpt += predict_label*target_label;
++total;
}
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
{
info("Mean squared error = %g (regression)\n",error/total);
info("Squared correlation coefficient = %g (regression)\n",
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
);
}
else
info("Accuracy = %g%% (%d/%d) (classification)\n",
(double)correct/total*100,correct,total);
if(predict_probability)
free(prob_estimates);
}
void exit_with_help()
{
printf(
"Usage: svm-predict [options] test_file model_file output_file\n"
"options:\n"
"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n"
"-q : quiet mode (no outputs)\n"
);
exit(1);
}
int main(int argc, char **argv)
{
FILE *input, *output;
int i;
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
++i;
switch(argv[i-1][1])
{
case 'b':
predict_probability = atoi(argv[i]);
break;
case 'q':
info = &print_null;
i--;
break;
default:
fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]);
exit_with_help();
}
}
if(i>=argc-2)
exit_with_help();
input = fopen(argv[i],"r");
if(input == NULL)
{
fprintf(stderr,"can't open input file %s\n",argv[i]);
exit(1);
}
output = fopen(argv[i+2],"w");
if(output == NULL)
{
fprintf(stderr,"can't open output file %s\n",argv[i+2]);
exit(1);
}
if((model=svm_load_model(argv[i+1]))==0)
{
fprintf(stderr,"can't open model file %s\n",argv[i+1]);
exit(1);
}
x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node));
if(predict_probability)
{
if(svm_check_probability_model(model)==0)
{
fprintf(stderr,"Model does not support probabiliy estimates\n");
exit(1);
}
}
else
{
if(svm_check_probability_model(model)!=0)
info("Model supports probability estimates, but disabled in prediction.\n");
}
predict(input,output);
svm_free_and_destroy_model(&model);
free(x);
free(line);
fclose(input);
fclose(output);
return 0;
}